The missing Northern European winter cooling response to Arctic sea ice loss

被引:78
作者
Screen, James A. [1 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, 603 Laver Bldg,North Pk Rd, Exeter EX4 4QE, Devon, England
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
英国自然环境研究理事会;
关键词
ATMOSPHERIC CIRCULATION; MIDLATITUDE WEATHER; ATLANTIC SST; COLD WINTERS; IMPACT; ANOMALIES; AMPLIFICATION; LINK; PATTERNS; TRACK;
D O I
10.1038/ncomms14603
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reductions in Arctic sea ice may promote the negative phase of the North Atlantic Oscillation (NAO- ). It has been argued that NAO-related variability can be used an as analogue to predict the effects of Arctic sea ice loss on mid-latitude weather. As NAO- events are associated with colder winters over Northern Europe, a negatively shifted NAO has been proposed as a dynamical pathway for Arctic sea ice loss to cause Northern European cooling. This study uses large-ensemble atmospheric simulations with prescribed ocean surface conditions to examine how seasonal-scale NAO- events are affected by Arctic sea ice loss. Despite an intensification of NAO- events, reflected by more prevalent easterly flow, sea ice loss does not lead to Northern European winter cooling and daily cold extremes actually decrease. The dynamical cooling from the changed NAO is 'missing', because it is offset (or exceeded) by a thermodynamical effect owing to advection of warmer air masses.
引用
收藏
页数:9
相关论文
共 73 条
[1]  
Alexander MA, 2004, J CLIMATE, V17, P890, DOI 10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO
[2]  
2
[3]   Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions [J].
Balmaseda, Magdalena A. ;
Ferranti, Laura ;
Molteni, Franco ;
Palmer, Tim N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (652) :1655-1664
[4]   The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? [J].
Barnes, Elizabeth A. ;
Screen, James A. .
WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2015, 6 (03) :277-286
[5]   September sea-ice cover in the Arctic Ocean projected to vanish by 2100 [J].
Boe, Julien ;
Hall, Alex ;
Qu, Xin .
NATURE GEOSCIENCE, 2009, 2 (05) :341-343
[6]   Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century [J].
Cassano, John J. ;
Uotila, Petteri ;
Lynch, Amanda H. ;
Cassano, Elizabeth N. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2007, 112 (G4)
[7]   PROPAGATION OF PLANETARY-SCALE DISTURBANCES FROM LOWER INTO UPPER ATMOSPHERE [J].
CHARNEY, JG ;
DRAZIN, PG .
JOURNAL OF GEOPHYSICAL RESEARCH, 1961, 66 (01) :83-+
[8]   The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss [J].
Chen, Hans W. ;
Zhang, Fuqing ;
Alley, Richard B. .
JOURNAL OF CLIMATE, 2016, 29 (21) :7831-7849
[9]  
Cohen J, 2014, NAT GEOSCI, V7, P627, DOI [10.1038/ngeo2234, 10.1038/NGEO2234]
[10]  
Cohen J, 2013, OCEANOGRAPHY, V26, P152