Multilinear fractional integral operators on non-homogeneous metric measure spaces

被引:3
作者
Gong, Huajun [1 ,2 ]
Xie, Rulong [3 ,4 ]
Xu, Chen [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[4] Chaohu Univ, Dept Math, Hefei 238000, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2016年
关键词
multilinear fractional integrals; commutators; non-homogeneous metric measure spaces; CALDERON-ZYGMUND OPERATORS; NON-DOUBLING MEASURES; SINGULAR-INTEGRALS; HARDY-SPACES; COMMUTATORS; BOUNDEDNESS; H-1; THEOREM; BMO;
D O I
10.1186/s13660-016-1218-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the boundedness in Lebesgue spaces for multilinear fractional integral operators and commutators generated by multilinear fractional integrals with an RBMO(mu) function on non-homogeneous metric measure spaces is obtained.
引用
收藏
页数:17
相关论文
共 33 条
[21]   Boundedness of Calderon-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations [J].
Liu, Suile ;
Yang, Dachun ;
Yang, Dongyong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) :258-272
[22]   The Tb-theorem on non-homogeneous spaces [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
ACTA MATHEMATICA, 2003, 190 (02) :151-239
[23]   Littlewood-Paley theory on metric spaces with non doubling measures and its applications [J].
Tan ChaoQiang ;
Li Ji .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (05) :983-1004
[24]   Hardy Spaces, Regularized BMO Spaces and the Boundedness of Caldern-Zygmund Operators on Non-homogeneous Spaces [J].
The Anh Bui ;
Duong, Xuan Thinh .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :895-932
[25]   Painleve's problem and the semiadditivity of analytic capacity [J].
Tolsa, X .
ACTA MATHEMATICA, 2003, 190 (01) :105-149
[26]   BMO, H1, and Calderon-Zygmund operators for non doubling measures [J].
Tolsa, X .
MATHEMATISCHE ANNALEN, 2001, 319 (01) :89-149
[27]  
Tolsa X., 2014, PROGR MATH, V307
[28]   Θ-type Calderon-Zygmund Operators with Non-doubling Measures [J].
Xie, Ru-long ;
Shu, Li-sheng .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (02) :263-280
[29]   COMMUTATORS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS ON NON-HOMOGENEOUS METRIC MEASURE SPACES [J].
Xie, Rulong ;
Gong, Huajun ;
Zhou, Xiaoyao .
TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03) :703-723
[30]   Boundedness in Lebesgue spaces for commutators of multilinear singular integrals and RBMO functions with non-doubling measures [J].
Xu, Jing-shi .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03) :361-376