Multilinear fractional integral operators on non-homogeneous metric measure spaces

被引:3
作者
Gong, Huajun [1 ,2 ]
Xie, Rulong [3 ,4 ]
Xu, Chen [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[4] Chaohu Univ, Dept Math, Hefei 238000, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2016年
关键词
multilinear fractional integrals; commutators; non-homogeneous metric measure spaces; CALDERON-ZYGMUND OPERATORS; NON-DOUBLING MEASURES; SINGULAR-INTEGRALS; HARDY-SPACES; COMMUTATORS; BOUNDEDNESS; H-1; THEOREM; BMO;
D O I
10.1186/s13660-016-1218-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the boundedness in Lebesgue spaces for multilinear fractional integral operators and commutators generated by multilinear fractional integrals with an RBMO(mu) function on non-homogeneous metric measure spaces is obtained.
引用
收藏
页数:17
相关论文
共 33 条
[1]  
CAO Y, 2013, ABSTR APPL ANAL, V2013, P96459
[2]   A note on commutators of fractional integrals with RBMO(μ) functions [J].
Chen, WG ;
Sawyer, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1287-1298
[3]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[4]   Hardy spaces H p over non-homogeneous metric measure spaces and their applications [J].
Fu Xing ;
Lin HaiBo ;
Yang DaChun ;
Yang DongYong .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) :309-388
[5]   GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES [J].
Fu, Xing ;
Yang, Dachun ;
Yuan, Wen .
TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02) :509-557
[6]   BOUNDEDNESS OF MULTILINEAR COMMUTATORS OF CALDERON-ZYGMUND OPERATORS ON ORLICZ SPACES OVER NON-HOMOGENEOUS SPACES [J].
Fu, Xing ;
Yang, Dachun ;
Yuan, Wen .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06) :2203-2238
[7]  
García-Cuerva J, 2001, INDIANA U MATH J, V50, P1241
[8]  
Grafakos L, 2002, PUBL MAT, P57
[9]   Multilinear Calderon-Zygmund theory [J].
Grafakos, L ;
Torres, RH .
ADVANCES IN MATHEMATICS, 2002, 165 (01) :124-164
[10]   Multilinear commutators of singular integrals with non doubling measures [J].
Hu, G ;
Meng, Y ;
Yang, DC .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (02) :235-255