A Plasmonic Spanner for Metal Particle Manipulation

被引:75
作者
Zhang, Yuquan [1 ]
Shi, Wei [2 ]
Shen, Zhe [2 ]
Man, Zhongsheng [2 ]
Min, Changjun [1 ]
Shen, Junfeng [3 ]
Zhu, Siwei [4 ]
Urbach, H. Paul [5 ]
Yuan, Xiaocong [1 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Inst Micro & Nano Opt,Minist Educ & Guangdong Pro, Shenzhen 518060, Peoples R China
[2] Nankai Univ, Inst Modern Opt, Tianjin 300071, Peoples R China
[3] Southwest Jiaotong Univ, Emei 614202, Peoples R China
[4] Tianjin Union Med Ctr, Inst Oncol, Tianjin 300121, Peoples R China
[5] Delft Univ Technol, Opt Res Grp, NL-2628 CJ Delft, Netherlands
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; GOLD NANOPARTICLES; LIGHT; POLARIZATION; CONFINEMENT; FORCE; TRAP; BEAM;
D O I
10.1038/srep15446
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and dynamic rotation of metal particles, especially those of mesoscopic and Mie size. To uncover the different physical mechanisms of OV and PV tweezers, we investigated the force distribution and trapping potential of metal particles. In OV tweezers the stronger scattering force causes a positive potential barrier that repels particles, whereas in PV tweezers the dominant gradient force contributes to a negative potential well, resulting in stably trapped particles. Compared with OV, the orbital angular momentum of PV produces an azimuthal scattering force that rotates the trapped particles with more precise radius and position. Our results demonstrate that PV tweezers are superior in manipulation of metal particles.
引用
收藏
页数:9
相关论文
共 36 条
[21]   Intrinsic and extrinsic nature of the orbital angular momentum of a light beam [J].
O'Neil, AT ;
MacVicar, I ;
Allen, L ;
Padgett, MJ .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4
[22]  
Padgett M, 2011, NAT PHOTONICS, V5, P343, DOI [10.1038/nphoton.2011.81, 10.1038/NPHOTON.2011.81]
[23]   Optical forces near a nanoantenna [J].
Ploschner, Martin ;
Mazilu, Michael ;
Krauss, Thomas F. ;
Dholakia, Kishan .
JOURNAL OF NANOPHOTONICS, 2010, 4
[24]   Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures [J].
Saleh, Amr A. E. ;
Dionne, Jennifer A. .
NANO LETTERS, 2012, 12 (11) :5581-5586
[25]   Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode Surface-enhanced Raman scattering [J].
Shen, Junfeng ;
Wang, Jian ;
Zhang, Cuijiao ;
Min, Changjun ;
Fang, Hui ;
Du, Luping ;
Zhu, Siwei ;
Yuan, X. -C. .
APPLIED PHYSICS LETTERS, 2013, 103 (19)
[26]   Visualizing orbital angular momentum of plasmonic vortices [J].
Shen, Z. ;
Hu, Z. J. ;
Yuan, G. H. ;
Min, C. J. ;
Fang, H. ;
Yuan, X-C. .
OPTICS LETTERS, 2012, 37 (22) :4627-4629
[27]   Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation [J].
Svedberg, Fredrik ;
Li, Zhipeng ;
Xu, Hongxing ;
Kall, Mikael .
NANO LETTERS, 2006, 6 (12) :2639-2641
[28]   OPTICAL TRAPPING OF METALLIC RAYLEIGH PARTICLES [J].
SVOBODA, K ;
BLOCK, SM .
OPTICS LETTERS, 1994, 19 (13) :930-932
[29]   Phase singularity of surface plasmon polaritons generated by optical vortices [J].
Tan, P. S. ;
Yuan, G. H. ;
Wang, Q. ;
Zhang, N. ;
Zhang, D. H. ;
Yuan, X. -C. .
OPTICS LETTERS, 2011, 36 (16) :3287-3289
[30]   Gold Nanoparticles: A Revival in Precious Metal Administration to Patients [J].
Thakor, A. S. ;
Jokerst, J. ;
Zavaleta, C. ;
Massoud, T. F. ;
Gambhir, S. S. .
NANO LETTERS, 2011, 11 (10) :4029-4036