A Plasmonic Spanner for Metal Particle Manipulation

被引:75
作者
Zhang, Yuquan [1 ]
Shi, Wei [2 ]
Shen, Zhe [2 ]
Man, Zhongsheng [2 ]
Min, Changjun [1 ]
Shen, Junfeng [3 ]
Zhu, Siwei [4 ]
Urbach, H. Paul [5 ]
Yuan, Xiaocong [1 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Inst Micro & Nano Opt,Minist Educ & Guangdong Pro, Shenzhen 518060, Peoples R China
[2] Nankai Univ, Inst Modern Opt, Tianjin 300071, Peoples R China
[3] Southwest Jiaotong Univ, Emei 614202, Peoples R China
[4] Tianjin Union Med Ctr, Inst Oncol, Tianjin 300121, Peoples R China
[5] Delft Univ Technol, Opt Res Grp, NL-2628 CJ Delft, Netherlands
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; GOLD NANOPARTICLES; LIGHT; POLARIZATION; CONFINEMENT; FORCE; TRAP; BEAM;
D O I
10.1038/srep15446
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and dynamic rotation of metal particles, especially those of mesoscopic and Mie size. To uncover the different physical mechanisms of OV and PV tweezers, we investigated the force distribution and trapping potential of metal particles. In OV tweezers the stronger scattering force causes a positive potential barrier that repels particles, whereas in PV tweezers the dominant gradient force contributes to a negative potential well, resulting in stably trapped particles. Compared with OV, the orbital angular momentum of PV produces an azimuthal scattering force that rotates the trapped particles with more precise radius and position. Our results demonstrate that PV tweezers are superior in manipulation of metal particles.
引用
收藏
页数:9
相关论文
共 36 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[3]   ORBITAL ANGULAR-MOMENTUM AND NONPARAXIAL LIGHT-BEAMS [J].
BARNETT, SM ;
ALLEN, L .
OPTICS COMMUNICATIONS, 1994, 110 (5-6) :670-678
[4]   Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers [J].
Bendix, Poul M. ;
Nader, S. ;
Reihani, S. ;
Oddershede, Lene B. .
ACS NANO, 2010, 4 (04) :2256-2262
[5]   Efficient optical trapping and visualization of silver nanoparticles [J].
Bosanac, Lana ;
Aabo, Thomas ;
Bendix, Poul M. ;
Oddershede, Lene B. .
NANO LETTERS, 2008, 8 (05) :1486-1491
[6]   Structure of optical vortices [J].
Curtis, JE ;
Grier, DG .
PHYSICAL REVIEW LETTERS, 2003, 90 (13) :4
[7]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346
[8]   Optical vortex trap for resonant confinement of metal nanoparticles [J].
Dienerowitz, Maria ;
Mazilu, Michael ;
Reece, Peter J. ;
Krauss, Thomas F. ;
Dholakia, Kishan .
OPTICS EXPRESS, 2008, 16 (07) :4991-4999
[9]   Why molecules move along a temperature gradient [J].
Duhr, Stefan ;
Braun, Dieter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (52) :19678-19682
[10]   Optical angular-momentum transfer to trapped absorbing particles [J].
Friese, MEJ ;
Enger, J ;
RubinszteinDunlop, H ;
Heckenberg, NR .
PHYSICAL REVIEW A, 1996, 54 (02) :1593-1596