Existence results for impulsive fractional q-difference equations with anti-periodic boundary conditions

被引:4
作者
Ahmad, Bashir [1 ]
Tariboon, Jessada [2 ]
Ntouyas, Sotiris K. [1 ,3 ]
Alsulami, Hamed H. [1 ]
Monaquel, Shatha [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[2] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[3] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
来源
BOUNDARY VALUE PROBLEMS | 2016年
关键词
quantum calculus; impulsive fractional q-difference equations; existence; uniqueness; fixed point theorem; POSITIVE SOLUTIONS;
D O I
10.1186/s13661-016-0521-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a Caputo type anti-periodic boundary value problem of impulsive fractional q-difference equations involving a q-shifting operator of the form (a)Phi(q)(m) = qm + (1 - q)a. Concerning the existence of solutions for the given problem, two theorems are proved via Schauder's fixed point theorem and the Leray-Schauder nonlinear alternative, while the uniqueness of solutions is established by means of Banach's contraction mapping principle. Finally, we discuss some examples illustrating the main results.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions
    Qiao, Yan
    Zhou, Zongfu
    BOUNDARY VALUE PROBLEMS, 2017,
  • [22] Existence of solutions for nonlinear fractional differential equations with impulses and anti-periodic boundary conditions
    Zhang, Lihong
    Wang, Guotao
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (07) : 1 - 11
  • [23] Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions
    Aqlan, Mohammed H.
    Alsaedi, Ahmed
    Ahmad, Bashir
    Nieto, Juan J.
    OPEN MATHEMATICS, 2016, 14 : 723 - 735
  • [24] Existence results for fractional q-difference equations of order α ∈]2, 3[ with three-point boundary conditions
    Almeida, Ricardo
    Martins, Natalia
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) : 1675 - 1685
  • [25] EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FRACTIONAL Q-DIFFERENCE EQUATIONS
    Ulke, Oykum
    Topal, Fatma Serap
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 473 - 487
  • [26] Existence of solutions for fractional q-difference equations
    Ulke, Oykum
    Topal, Fatma Serap
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 573 - 591
  • [27] Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order
    Wang, Guotao
    Ahmad, Bashir
    Zhang, Lihong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (03) : 792 - 804
  • [28] New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Praveen Agarwal
    Advances in Difference Equations, 2015
  • [29] Fractional Boundary Value Problems with Integral and Anti-periodic Boundary Conditions
    Xu, Yufeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 571 - 587
  • [30] Fractional Differential Equations with Nonlocal (Parametric Type) Anti-Periodic Boundary Conditions
    Agarwal, Ravi P.
    Ahmad, Bashir
    Nieto, Juan J.
    FILOMAT, 2017, 31 (05) : 1207 - 1214