GLOBAL CURRENT ALGEBRAS AND LOCALIZATION ON RIEMANN SURFACES

被引:6
作者
Sheinman, Oleg K. [1 ]
机构
[1] Steklov Math Inst, Dept Geometry & Topol, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Lax operator algebra; semisimple Lie algebra; Lax equation; grading; Hamiltonian theory; LAX OPERATOR-ALGEBRAS; VIRASORO-TYPE; EQUATIONS;
D O I
10.17323/1609-4514-2015-15-4-833-846
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, certain new Lie algebras of algebraic-geometrical nature, and their relations with the theory of finite-dimensional integrable systems are described.
引用
收藏
页码:833 / 846
页数:14
相关论文
共 27 条
[1]   THE SUGAWARA CONSTRUCTION ON GENUS-G RIEMANN SURFACES [J].
BONORA, L ;
RINALDI, M ;
RUSSO, J ;
WU, K .
PHYSICS LETTERS B, 1988, 208 (3-4) :440-446
[2]  
Feigin B. L., 1990, P ICM KYOT 1990, P71
[3]   Four dimensional realization of two dimensional current groups [J].
Frenkel, IB ;
Khesin, BA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) :541-561
[4]   INTEGRABILITY AND SEIBERG-WITTEN EXACT SOLUTION [J].
GORSKY, A ;
KRICHEVER, I ;
MARSHAKOV, A ;
MIRONOV, A ;
MOROZOV, A .
PHYSICS LETTERS B, 1995, 355 (3-4) :466-474
[5]  
Kac V.G., 1990, Infinite-dimensional Lie algebras, DOI 10.1017/CBO9780511626234
[6]   Vector bundles and lax equations on algebraic curves [J].
Krichever, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (02) :229-269
[7]   Lax operator algebras [J].
Krichever, I. M. ;
Sheinman, O. K. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2007, 41 (04) :284-294
[8]  
Krichever I.M., 1978, FUNCT ANAL APPL+, V12, P276, DOI 10.1007/BF01076381
[9]   HOLOMORPHIC BUNDLES OVER ALGEBRAIC-CURVES AND NON-LINEAR EQUATIONS [J].
KRICHEVER, IM ;
NOVIKOV, SP .
RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (06) :53-79
[10]  
KRICHEVER IM, 1987, FUNCT ANAL APPL+, V21, P294