Convesity, complete monotonicity and inequalities on zeta and gamma functions, on functions of Baskov operators and on arithmetic functions

被引:22
作者
Bastien, G
Rogalski, M
机构
[1] Univ Paris 06, CNRS, Inst Math Jussieu, Equip Anal, F-75252 Paris 05, France
[2] Univ Paris 07, CNRS, Inst Math Jussieu, Equip Anal, F-75252 Paris, France
[3] Univ Sci & Tech Lille Flandres Artois, Inst Math Jussieu, F-59655 Villeneuve Dascq, France
[4] Univ Sci & Tech Lille Flandres Artois, CNRS, F-59655 Villeneuve Dascq, France
[5] Univ Lille 1, F-59655 Villeneuve Dascq, France
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2002年 / 54卷 / 05期
关键词
D O I
10.4153/CJM-2002-034-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give optimal upper and lower bounds for the function H(x, s) = Sigma(ngreater than or equal to1) 1/(x+n)(s), for x greater than or equal to 0 and s > 1. These bounds improve the standard inequalities with integrals. We deduce from them inequalities about Riemann's zeta function, and we give a conjecture about the monotonicity of the function s --> [(s-1)zeta(s)](1/s-1) Some applications concern the convexity of functions related to Euler's F function and optimal majorization of elementary functions of Baskakov's operators. Then, the result proved for the function x --> x(-s) is extended to completely monotonic functions. This leads to easy evaluation of the order of the generating series of some arithmetical functions when z tends to 1. The last part is concerned with the class of non negative decreasing convex functions on ]0, +infinity[, integrable at infinity.
引用
收藏
页码:916 / 944
页数:29
相关论文
共 18 条
[1]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[2]  
[Anonymous], 1995, INTRO THEORIE ANAL P
[3]  
[Anonymous], COMMUNICATION
[4]  
[Anonymous], 1984, CONCISE INTRO THEORY
[5]  
[Anonymous], 1946, PRINCETON MATH SERIE
[6]  
[Anonymous], 1999, ENCY MATH APPL
[8]  
BOURBAKI N, FONCTIONS VARIABLES, pCH6
[9]  
Chandrasekharan K., 1970, ARITHMETICAL FUNCTIO
[10]  
DELANGE H, 1987, C MATH, V53