Magnetic layer thickness dependence of magnetization reversal in electrodeposited CoNi/Cu multilayer nanowires

被引:62
作者
Tang, Xue-Ti [1 ]
Wang, Gwo-Ching
Shima, Mutsuhiro
机构
[1] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
magnetic nanowire; magnetic layered films; magnetization reversal;
D O I
10.1016/j.jmmm.2006.06.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetization reversal of electrodeposited CoNi/Cu multilayer nanowires patterned in an array using a hole template has been investigated. The reversal mode is found to depend on the CoNi layer thickness t(CoNi); with increasing t(CoNi) a transition occurs from coherent rotation to a combination of coherent and incoherent rotation at around t(CoNi) = 51 nm. The reversal mode has been identified using the magnetic hysteresis loops measured at room temperature for CoNi/Cu nanowires placed at various angles between the directions of the nanowire axis and external fields using a vibrating sample magnetometer. The nanowire samples have a diameter of similar to 250 mn and constant Cu layer thickness of 4.2 nm with various t(CoNi) ranging from 6.8 nm to 7.5 mu m. With increasing t(CoNi), the magnetic easy axis moves from the direction perpendicular to nanowires to that parallel to the nanowires at around t(CoNi) = 51 nm, indicating a change in the magnetization reversal mode. The reversal mode for the nanowires with thin disk-shaped CoNi layers (t(CoNi) = 6.8, 12 and 17 nm) is of a coherent rotation type, while that for long rod-shaped CoNi layers (t(CoNi) = 150 nm, 1.0, 2.5 and 7.5 mu m) can be consistently explained by a combination of coherent rotation and a curling mode. The effects of dipole-dipole interactions between nanowires and between adjacent magnetic layers in each nanowire on the reversal process have been discussed. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 196
页数:9
相关论文
共 32 条
[1]   Angular dependence of nucleation by curling in a prolate spheroid [J].
Aharoni, A .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :1281-1287
[2]   Structure and magnetic properties of electrodeposited cobalt nanowires [J].
Bantu, AKM ;
Rivas, J ;
Zaragoza, G ;
López-Quintela, MA ;
Blanco, MC .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (06) :3393-3397
[3]   CRITERION FOR UNIFORM MICROMAGNETIZATION [J].
BROWN, WF .
PHYSICAL REVIEW, 1957, 105 (05) :1479-1482
[4]   Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires [J].
Chen, M ;
Searson, PC ;
Chien, CL .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) :8253-8255
[5]   Switching mechanism in ring-shaped pseudospin valves [J].
Dao, N ;
Whittenburg, SL .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (05) :2525-2527
[6]   Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires [J].
Dubois, S ;
Marchal, C ;
Beuken, JM ;
Piraux, L ;
Duvail, JL ;
Fert, A ;
George, JM ;
Maurice, JL .
APPLIED PHYSICS LETTERS, 1997, 70 (03) :396-398
[7]   Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes [J].
Evans, PR ;
Yi, G ;
Schwarzacher, W .
APPLIED PHYSICS LETTERS, 2000, 76 (04) :481-483
[8]   Magnetization processes in nickel and cobalt electrodeposited nanowires [J].
Ferre, R ;
Ounadjela, K ;
George, JM ;
Piraux, L ;
Dubois, S .
PHYSICAL REVIEW B, 1997, 56 (21) :14066-14075
[9]   CRITICAL SIZE AND NUCLEATION FIELD OF IDEAL FERROMAGNETIC PARTICLES [J].
FREI, EH ;
SHTRIKMAN, S ;
TREVES, D .
PHYSICAL REVIEW, 1957, 106 (03) :446-454
[10]   Transition from coherent rotation to curling mode reversal process in ferromagnetic nanowires [J].
Goolaup, S ;
Singh, N ;
Adeyeye, AO ;
Ng, V ;
Jalil, MBA .
EUROPEAN PHYSICAL JOURNAL B, 2005, 44 (02) :259-264