Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters

被引:9
作者
Al-Sawalha, Ayman [1 ]
机构
[1] King Faisal Univ, Dept Phys, Fac Sci, Al Hasso 31982, Saudi Arabia
关键词
GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; SPIN GENERATOR; CIRCUIT;
D O I
10.1016/j.chaos.2009.03.100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is devoted to investigating the anti-synchronization between two novel different chaotic systems. Two different anti-synchronization methods are proposed. Active control is applied when system parameters are known and adaptive control is employed when system parameters are uncertain or unknown. Controllers and update laws of parameters are designed based on Lyapunov stability theory. In both cases, sufficient conditions for the anti-synchronization are obtained analytically. Finally, a numerical simulations is presented to show the effectiveness of the proposed chaos anti-synchronization schemes. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1926 / 1932
页数:7
相关论文
共 21 条
[1]   Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification [J].
Chen, SH ;
Hu, J ;
Wang, CP ;
Lü, JH .
PHYSICS LETTERS A, 2004, 321 (01) :50-55
[2]   Adaptive synchronization of Lu system with uncertain parameters [J].
Elabbasy, EM ;
Agiza, HN ;
El-Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :657-667
[3]   Controlling chaotic behaviour for spin generator and Rossler dynamical systems with feedback control [J].
Hegazi, A ;
Agiza, HN ;
El-Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2001, 12 (04) :631-658
[4]   Synchronization and adaptive synchronization of nuclear spin generator system [J].
Hegazi, AS ;
Agiza, HN ;
El Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2001, 12 (06) :1091-1099
[5]   Synchronization of chaotic systems via nonlinear control [J].
Huang, LL ;
Feng, RP ;
Wang, M .
PHYSICS LETTERS A, 2004, 320 (04) :271-275
[6]   Experimental study on impulsive synchronization between two modified Chua's circuits [J].
Kilic, Recai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) :1298-1303
[7]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[8]   Anti-phase synchronization in coupled map lattices [J].
Liu, J ;
Ye, C ;
Zhang, S ;
Song, W .
PHYSICS LETTERS A, 2000, 274 (1-2) :27-29
[9]   An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems [J].
Mariño, IP ;
Míguez, J .
PHYSICS LETTERS A, 2006, 351 (4-5) :262-267
[10]   Generalized synchronization of nuclear spin generator system [J].
Molaei, M. R. ;
Umut, Omur .
CHAOS SOLITONS & FRACTALS, 2008, 37 (01) :227-232