Electrode Nanomaterials for Room Temperature Sodium-Ion Batteries: A Review

被引:17
作者
Huang, Ling [1 ,2 ,3 ]
Cheng, Jianli [1 ,2 ]
Li, Xiaodong [1 ,2 ]
Wang, Bin [1 ,2 ]
机构
[1] China Acad Engn Phys, Inst Chem Mat, Mianyang 621900, Sichuan, Peoples R China
[2] Sichuan R&D Ctr New Mat, Mianyang 621900, Sichuan, Peoples R China
[3] Sichuan Univ, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrolyte; Energy Storage; Negative Electrode; Positive Electrode; Sodium Ion Batteries; SUPERIOR RATE CAPABILITY; HARD CARBON ANODES; HIGH-CAPACITY; ELECTROCHEMICAL INSERTION; CATHODE MATERIALS; RECHARGEABLE BATTERIES; PYROPHOSPHATE CATHODE; POSITIVE ELECTRODE; CYCLING STABILITY; NA-STORAGE;
D O I
10.1166/jnn.2015.11122
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Energy storage and conversion has becoming key issues because of the increasing demand for electronic devices. Lithium-ion batteries have dominated the portable electronics industry over the past decades and are now powering zero-emission vehicles owing to their high energy density. However, the availability of lithium resources, price as well as safety issues of lithium ion batteries are now becoming the main challenges that hinder their widespread applications. Room temperature sodium-ion batteries have been considered as one of potential candidates because of the abundance of metal sodium, its low cost and the similarity of both Li and Na insertion chemistries. This review will present up-to-date nanomaterial advancements of sodium-ion batteries published. Potential negative electrodes include carbon based-anodes, titanium based-anodes and alloy anodes. Positive electrodes include oxides, polyanion compounds as well as other materials. The advantages and limitations of these materials will be discussed, along with the development in electrolyte that has been explored.
引用
收藏
页码:6295 / 6307
页数:13
相关论文
共 103 条
[1]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[4]   Magnetic Structure and Properties of the Na2CoP2O7 Pyrophosphate Cathode for Sodium-Ion Batteries: A Supersuperexchange-Driven Non-Collinear Antiferromagnet [J].
Barpanda, Prabeer ;
Avdeev, Maxim ;
Ling, Chris D. ;
Lu, Jiechen ;
Yamada, Atsuo .
INORGANIC CHEMISTRY, 2013, 52 (01) :395-401
[5]   Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Okubo, Masashi ;
Zhou, Haoshen ;
Yamada, Atsuo .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 :116-119
[6]   Electrochemical investigation of the P2-NaxCoO2 phase diagram [J].
Berthelot, R. ;
Carlier, D. ;
Delmas, C. .
NATURE MATERIALS, 2011, 10 (01) :74-U3
[7]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[8]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[9]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[10]   Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries [J].
Chihara, Kuniko ;
Kitajou, Ayuko ;
Gocheva, Irina D. ;
Okada, Shigeto ;
Yamaki, Jun-ichi .
JOURNAL OF POWER SOURCES, 2013, 227 :80-85