Microstructure and surface oxidation behavior of an austenitic Fe-Mn-Si-Cr-Ni-Co shape memory stainless steel at 800 °C in air

被引:23
作者
Silva, R. [1 ]
Arana, C. [1 ]
de Sousa Malafaia, A. M. [2 ]
Mendes Filho, A. A. [3 ]
Pascal, C. [4 ]
Otubo, J. [5 ,6 ]
Sordi, V. L. [1 ]
Rovere, C. A. D. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Mat Engn, Munir Rachid Corros Lab, Rodovia Washington Luis Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Joao del Rei, Dept Mech Engn, Praca Frei Orlando 170, BR-36307352 Sao Joao Del Rei, MG, Brazil
[3] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[4] Univ Grenoble Alpes, CNRS, Grenoble INP, SIMaP, F-38000 Grenoble, France
[5] Technol Inst Aeronaut, Div Mech Engn, Praca Marechal Eduardo Gomes,50 Vila Acacias, BR-12228900 Sao Jose Dos Campos, Brazil
[6] IPEN, Nucl & Energy Res Inst, BR-05508000 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Stainless steel; High temperature oxidation; Microstructure; SEM; TEM; Thermodynamic simulations; HIGH-TEMPERATURE OXIDATION; CORROSION BEHAVIOR; MARTENSITIC-TRANSFORMATION; ALLOY; RESISTANCE; LAYERS;
D O I
10.1016/j.corsci.2019.108103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present research, the microstructure and oxidation behavior of an Fe-8.26Mn-5.25Si-12.80Cr-5.81Ni-11.84Co shape memory stainless steel (SMSS) was studied at 800 degrees C in air for up to 120 h. Phase changes and oxidation mechanism were discussed based on microscopy analyses, thermogravimetric measurements and thermodynamic simulations. The results show that oxidation exposure promotes the formation of the sigma, chi and ferrite phases in the metallic substrate. The oxidation behavior follows a parabolic law, with the kinetics of oxidation being controlled by the Mn2O3 oxide growth in the first hours, and by Mn3O4 and MnCr2O4 spinel growth after 24 h of exposure.
引用
收藏
页数:10
相关论文
共 43 条
[21]   Study of the sensitisation of a highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926), by means of scanning electrochemical microscopy [J].
Leiva-Garcia, R. ;
Akid, R. ;
Greenfield, D. ;
Gittens, J. ;
Munoz-Portero, M. J. ;
Garcia-Anton, J. .
ELECTROCHIMICA ACTA, 2012, 70 :105-111
[22]   Shape memory effects in an Fe14Mn6Si9Cr5Ni alloy for joining pipe [J].
Li, JC ;
Lü, XX ;
Jiang, Q .
ISIJ INTERNATIONAL, 2000, 40 (11) :1124-1126
[23]   The corrosion behavior of Fe-based shape memory alloys [J].
Lin, HC ;
Lin, KM ;
Lin, CS ;
Ouyang, TM .
CORROSION SCIENCE, 2002, 44 (09) :2013-2026
[24]   Optimization of Shape-Memory Effect in Fe-Mn-Si-Cr-Re Shape-Memory Alloys [J].
Lin, Kun-Ming ;
Chen, Jian-Hung ;
Lin, Chen-Chih ;
Liu, Cheng-Hsien ;
Lin, Hsin-Chih .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (07) :2327-2332
[25]   Recent developments in stainless steels [J].
Lo, K. H. ;
Shek, C. H. ;
Lai, J. K. L. .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2009, 65 (4-6) :39-104
[26]   DIFFUSION OF CATIONS IN CHROMIA LAYERS GROWN ON IRON-BASE ALLOYS [J].
LOBNIG, RE ;
SCHMIDT, HP ;
HENNESEN, K ;
GRABKE, HJ .
OXIDATION OF METALS, 1992, 37 (1-2) :81-93
[27]   Oxidation behavior of an austenitic stainless FeMnSiCrNi shape memory alloy [J].
Ma, Rui ;
Peng, Huabei ;
Wen, Yuhua ;
Zhang, Lijun ;
Zhao, Kai .
CORROSION SCIENCE, 2013, 66 :269-277
[28]   The corrosion behaviour of Fe-15Mn-7Si-9Cr-5Ni shape memory alloy [J].
Maji, BC ;
Das, CM ;
Krishnan, M ;
Ray, RK .
CORROSION SCIENCE, 2006, 48 (04) :937-949
[29]   PRECIPITATION OF AMORPHOUS SiO2 PARTICLES AND THEIR PROPERTIES [J].
Music, S. ;
Filipovic-Vincekovic, N. ;
Sekovanic, L. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (01) :89-94
[30]  
Naoumidis A., 1991, Journal of the European Ceramic Society, V7, P55, DOI 10.1016/0955-2219(91)90054-4