An Improved Upper Bound on the Linear 2-arboricity of 1-planar Graphs

被引:4
作者
Liu, Juan [1 ]
Wang, Yi Qiao [2 ]
Wang, Ping [3 ]
Zhang, Lu [1 ]
Wang, Wei Fan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Beijing Univ Chinese Med, Sch Management, Beijing 100029, Peoples R China
[3] St Francis Xavier Univ, Dept Math & Stat, Antigonish, NS, Canada
关键词
1-planar graph; linear; 2-arboricity; edge-partition; maximum degree;
D O I
10.1007/s10114-020-9488-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear 2-arboricity la(2)(G) of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. In this paper, we prove that if G is a 1-planar graph with maximum degree Delta, then la(2)(G) <= [Delta+1/2]+7. This improves a known result of Liu et al. (2019) that every 1-planar graph G has la(2)(G)<= [Delta+1/2] +14. We also observe that there exists a 7-regular 1-planar graph G such that la(2)(G)=6= [Delta+1/2]+2, which implies that our solution is within 6 from optimal.
引用
收藏
页码:262 / 278
页数:17
相关论文
共 18 条
[1]   ON LINEAR K-ARBORICITY [J].
BERMOND, JC ;
FOUQUET, JL ;
HABIB, M ;
PEROCHE, B .
DISCRETE MATHEMATICS, 1984, 52 (2-3) :123-132
[2]   Acyclic colouring of 1-planar graphs [J].
Borodin, OV ;
Kostochka, AV ;
Raspaud, A ;
Sopena, E .
DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) :29-41
[3]   A NEW PROOF OF THE 6 COLOR THEOREM [J].
BORODIN, OV .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :507-521
[4]   Linear k-arboricities on trees [J].
Chang, GJ ;
Chen, BL ;
Fu, HL ;
Huang, KC .
DISCRETE APPLIED MATHEMATICS, 2000, 103 (1-3) :281-287
[5]  
Chen B.-L., 1991, AUSTRALAS J COMBIN, V3, P55
[6]   On the linear k-arboricity of Kn and Kn,n [J].
Chen, BL ;
Huang, KC .
DISCRETE MATHEMATICS, 2002, 254 (1-3) :51-61
[7]   The structure of 1-planar graphs [J].
Fabrici, Igor ;
Madaras, Tomas .
DISCRETE MATHEMATICS, 2007, 307 (7-8) :854-865
[8]  
FU HL, 1994, ARS COMBINATORIA, V38, P309
[9]   The linear 2-arboricity of planar graphs [J].
Lih, KW ;
Tong, LD ;
Wang, WF .
GRAPHS AND COMBINATORICS, 2003, 19 (02) :241-248
[10]   Light structures in 1-planar graphs with an application to linear 2-arboricity [J].
Liu, Juan ;
Hu, Xiaoxue ;
Wang, Weifan ;
Wang, Yiqiao .
DISCRETE APPLIED MATHEMATICS, 2019, 267 :120-130