GELFAND-KIRILLOV DIMENSION OF THE QUANTIZED ALGEBRA OF REGULAR FUNCTIONS ON HOMOGENEOUS SPACES

被引:0
作者
Chakraborty, Partha Sarathi [1 ,2 ]
Saurabh, Bipul [3 ]
机构
[1] Indian Stat Inst, Theoret Stat & Math Unit, 203 BT Rd, Kolkata 700010, India
[2] Inst Math Sci HBNI, CIT Campus, Chennai 600113, Tamil Nadu, India
[3] Indian Inst Technol, Palaj 382355, Gandhinagar, India
关键词
Quantized function algebra; Weyl group; Gelfand-Kirillov dimension; QUANTUM; GROWTH;
D O I
10.1090/proc/14522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove that the Gelfand-Kirillov dimension of the quantized algebra of regular functions on certain homogeneous spaces of types A, C, and D is equal to the dimension of the homogeneous space as a real differentiable manifold.
引用
收藏
页码:3289 / 3302
页数:14
相关论文
共 16 条
[1]  
BANICA T, 1999, EXPOSITION MATH, V17, P313
[2]   GROWTH ESTIMATES FOR DISCRETE QUANTUM GROUPS [J].
Banica, Teodor ;
Vergnioux, Roland .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2009, 12 (02) :321-340
[3]   Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups [J].
Bichon, J ;
De Rijdt, A ;
Vaes, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (03) :703-728
[4]  
Bueso JL, 1998, LECT NOTES PURE APPL, V197, P55
[5]   Gelfand-Kirillov dimension of some simple unitarizable modules [J].
Chakraborty, Partha Sarathi ;
Saurabh, Bipul .
JOURNAL OF ALGEBRA, 2018, 514 :199-218
[6]   POLYNOMIAL GROWTH OF DISCRETE QUANTUM GROUPS, TOPOLOGICAL DIMENSION OF THE DUAL AND *-REGULARITY OF THE FOURIER ALGEBRA [J].
D'Andrea, Alessandro ;
Pinzari, Claudia ;
Rossi, Stefano .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (05) :2003-2027
[7]  
Gelfand I.M., 1966, Publications Mathmatiques de lIHS, P5, DOI [10.1007/BF02684800, DOI 10.1007/BF02684800]
[8]  
Humphreys James E., 1990, CAMBRIDGE STUDIES AD, V29
[9]  
Klimyk A., 1997, Quantum groups and their representations
[10]  
KOROGODSKI LI, 1998, MATH SURVEYS MONOGRA, V0056