Bias, Fairness and Accountability with Artificial Intelligence and Machine Learning Algorithms

被引:8
作者
Zhou, Nengfeng [1 ]
Zhang, Zach [1 ]
Nair, Vijayan N. [1 ]
Singhal, Harsh [1 ]
Chen, Jie [1 ]
机构
[1] Wells Fargo, Corp Model Risk, San Francisco, CA 94114 USA
关键词
AI; algorithm; bias; fairness; ML;
D O I
10.1111/insr.12492
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The advent of artificial intelligence (AI) and machine learning algorithms has led to opportunities as well as challenges in their use. In this overview paper, we begin with a discussion of bias and fairness issues that arise with the use of AI techniques, with a focus on supervised machine learning algorithms. We then describe the types and sources of data bias and discuss the nature of algorithmic unfairness. In addition, we provide a review of fairness metrics in the literature, discuss their limitations, and describe de-biasing (or mitigation) techniques in the model life cycle.
引用
收藏
页码:468 / 480
页数:13
相关论文
共 50 条
  • [41] Introduction to Artificial Intelligence and Machine Learning in Pathology and Medicine: Generative and Nongenerative Artificial Intelligence Basics
    Rashidi, Hooman H.
    Pantanowitz, Joshua
    Hanna, Matthew G.
    Tafti, Ahmad P.
    Sanghani, Parth
    Buchinsky, Adam
    Fennell, Brandon
    Deebajah, Mustafa
    Wheeler, Sarah
    Pearce, Thomas
    Abukhiran, Ibrahim
    Robertson, Scott
    Palmer, Octavia
    Gur, Mert
    Tran, Nam K.
    Pantanowitz, Liron
    MODERN PATHOLOGY, 2025, 38 (04)
  • [42] Fairness for machine learning software in education: A systematic mapping study
    Pham, Nga
    Hung, Pham Ngoc
    Nguyen-Duc, Anh
    JOURNAL OF SYSTEMS AND SOFTWARE, 2025, 219
  • [43] Effect of Information Presentation on Fairness Perceptions of Machine Learning Predictors
    van Berkel, Niels
    Goncalves, Jorge
    Russo, Daniel
    Hosio, Simo
    Skov, Mikael B.
    CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2021,
  • [44] Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning
    Pantanowitz, Liron
    Pearce, Thomas
    Abukhiran, Ibrahim
    Hanna, Matthew
    Wheeler, Sarah
    Soong, T. Rinda
    Tafti, Ahmad P.
    Pantanowitz, Joshua
    Lu, Ming Y.
    Mahmood, Faisal
    Gu, Qiangqiang
    Rashidi, Hooman H.
    MODERN PATHOLOGY, 2025, 38 (03)
  • [45] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Antonio Mario Bulfamante
    Francesco Ferella
    Austin Michael Miller
    Cecilia Rosso
    Carlotta Pipolo
    Emanuela Fuccillo
    Giovanni Felisati
    Alberto Maria Saibene
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 529 - 542
  • [46] Minimizing bias when using artificial intelligence in critical care medicine
    Ranard, Benjamin L.
    Park, Soojin
    Jia, Yugang
    Zhang, Yiye
    Alwan, Fatima
    Celi, Leo Anthony
    Lusczek, Elizabeth R.
    JOURNAL OF CRITICAL CARE, 2024, 82
  • [47] Artificial intelligence, machine learning, and deep learning in rhinology: a systematic review
    Bulfamante, Antonio Mario
    Ferella, Francesco
    Miller, Austin Michael
    Rosso, Cecilia
    Pipolo, Carlotta
    Fuccillo, Emanuela
    Felisati, Giovanni
    Saibene, Alberto Maria
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (02) : 529 - 542
  • [48] Measuring fairness preferences is important for artificial intelligence in health care
    Naeher, Anatol-Fiete
    Krumpal, Ivar
    Antao, Esther -Maria
    Ong, Erika
    Rojo, Marina
    Kaggwa, Fred
    Balzer, Felix
    Celi, Leo Anthony
    Braune, Katarina
    Wieler, Lothar H.
    Agha-Mir-Salim, Louis
    LANCET DIGITAL HEALTH, 2024, 6 (05): : e302 - e304
  • [49] Strategies to improve fairness in artificial intelligence: A systematic literature review
    Trigo, Antonio
    Stein, Nubia
    Belfo, Fernando Paulo
    EDUCATION FOR INFORMATION, 2024, 40 (03) : 323 - 346
  • [50] Controlling Fairness and Bias in Dynamic Learning-to-Rank
    Morik, Marco
    Singh, Ashudeep
    Hong, Jessica
    Joachims, Thorsten
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 429 - 438