Some preference relations based on q-rung orthopair fuzzy sets

被引:46
作者
Li, Hongxu [1 ]
Yin, Songyi [1 ]
Yang, Yang [1 ,2 ]
机构
[1] Hebei Univ Engn, Sch Management Engn & Business, Intelligent Comp & Financial Secur Lab, Handan, Peoples R China
[2] Hebei Univ Engn, Sch Management Engn & Business, Handan 056038, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
incomplete q-rung orthopair fuzzy preference relation; preference relation; q-rung orthopair fuzzy preference relation; q-rung orthopair fuzzy set; score function; GROUP DECISION-MAKING; HERONIAN MEAN OPERATORS; CONSENSUS; MODEL;
D O I
10.1002/int.22178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a generalization of intuitionistic fuzzy sets and Pythagorean fuzzy sets, q-rung orthopair fuzzy sets provide decision makers more flexible space in expressing their opinions. Preference relations have received widespread acceptance as an efficient tool in representing decision makers' preference over alternatives in the decision-making process. In this paper, some new preference relations are investigated based on the q-rung orthopair fuzzy sets. First, a novel score function is presented for ranking q-rung orthopair fuzzy numbers. Second, q-rung orthopair fuzzy preference relation, consistent q-rung orthopair fuzzy preference relation, incomplete q-rung orthopair fuzzy preference relation, consistent incomplete q-rung orthopair fuzzy preference relation, and acceptable incomplete q-rung orthopair fuzzy preference relation are defined. In the end, based on the new score function and these preference relations, some algorithms are constructed for ranking and selection of the decision-making alternatives.
引用
收藏
页码:2920 / 2936
页数:17
相关论文
共 22 条
[11]   Multiple attribute group decision making based on q-rung orthopair fuzzy Heronian mean operators [J].
Liu, Zhengmin ;
Wang, Song ;
Liu, Peide .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (12) :2341-2363
[12]   Multiple attribute decision-making method for dealing with heterogeneous relationship among attributes and unknown attribute weight information under q-rung orthopair fuzzy environment [J].
Liu, Zhengmin ;
Liu, Peide ;
Liang, Xia .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (09) :1900-1928
[13]   A Novel Approach to Decision-Making with Pythagorean Fuzzy Information [J].
Naz, Sumera ;
Ashraf, Samina ;
Akram, Muhammad .
MATHEMATICS, 2018, 6 (06)
[14]  
Orlovsky S. A., 1978, Fuzzy Sets and Systems, V1, P155, DOI 10.1016/0165-0114(78)90001-5
[15]  
Saaty T.L., 1980, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation
[16]   Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making [J].
Wei, Guiwu ;
Gao, Hui ;
Wei, Yu .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (07) :1426-1458
[17]   Some q-Rung Dual Hesitant Fuzzy Heronian Mean Operators with Their Application to Multiple Attribute Group Decision-Making [J].
Xu, Yuan ;
Shang, Xiaopu ;
Wang, Jun ;
Wu, Wen ;
Huang, Huiqun .
SYMMETRY-BASEL, 2018, 10 (10)
[18]   Intuitionistic preference relations and their application in group decision making [J].
Xu, Zeshui .
INFORMATION SCIENCES, 2007, 177 (11) :2363-2379
[19]   Aspects of generalized orthopair fuzzy sets [J].
Yager, Ronald R. ;
Alajlan, Naif ;
Bazi, Yakoub .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (11) :2154-2174
[20]   Generalized Orthopair Fuzzy Sets [J].
Yager, Ronald R. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (05) :1222-1230