Active Biological Materials

被引:69
作者
Fletcher, Daniel A. [1 ,3 ]
Geissler, Phillip L. [2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA
关键词
cell mechanics; actin cytoskeleton; in vitro reconstitution; crawling motility; filopodia; FILAMENT NETWORKS; ARP2/3; COMPLEX; BACTERIAL CYTOSKELETON; MECHANICAL-PROPERTIES; PICONEWTON FORCES; MOTILITY DRIVEN; CELL MECHANICS; STRESS FIBERS; POLYMERIZATION; GENERATION;
D O I
10.1146/annurev.physchem.040808.090304
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cells make use of dynamic internal structures to control shape and create movement. By consuming energy to assemble into highly organized systems of interacting parts, these structures can generate force and resist compression, as well as adaptively change in response to their environment. Recent progress in reconstituting cytoskeletal structures in vitro has provided an opportunity to characterize the mechanics and dynamics of filament networks formed from purified proteins. Results indicate that a complex interplay between length scales and timescales underlies the mechanical responses of these systems and that energy consumption, as manifested in molecular motor activity and cytoskeletal filament growth, can drive transitions between distinct material states. This review discusses the basic characteristics of these active biological materials that set them apart from conventional materials and that create a rich array of unique behaviors.
引用
收藏
页码:469 / 486
页数:18
相关论文
共 73 条
[1]   LOCOMOTION OF FIBROBLASTS IN CULTURE .2. RUFFLING [J].
ABERCROMBIE, M ;
HEAYSMAN, JE ;
PEGRUM, SM .
EXPERIMENTAL CELL RESEARCH, 1970, 60 (03) :437-+
[2]   LOCOMOTION OF FIBROBLASTS IN CULTURE .1. MOVEMENTS OF LEADING EDGE [J].
ABERCROMBIE, M ;
HEAYSMAN, JE ;
PEGRUM, SM .
EXPERIMENTAL CELL RESEARCH, 1970, 59 (03) :393-+
[3]   Microrheology of human lung epithelial cells measured by atomic force microscopy [J].
Alcaraz, J ;
Buscemi, L ;
Grabulosa, M ;
Trepat, X ;
Fabry, B ;
Farré, R ;
Navajas, D .
BIOPHYSICAL JOURNAL, 2003, 84 (03) :2071-2079
[4]   The dynamics of actin-based motility depend on surface parameters [J].
Bernheim-Groswasser, A ;
Wiesner, S ;
Golsteyn, RM ;
Carlier, MF ;
Sykes, C .
NATURE, 2002, 417 (6886) :308-311
[5]   Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins [J].
Blanchoin, L ;
Amann, KJ ;
Higgs, HN ;
Marchand, JB ;
Kaiser, DA ;
Pollard, TD .
NATURE, 2000, 404 (6781) :1007-1011
[6]   Einstein relation generalized to nonequilibrium [J].
Blickle, V. ;
Speck, T. ;
Lutz, C. ;
Seifert, U. ;
Bechinger, C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (21)
[7]   Actin machinery: pushing the envelope [J].
Borisy, GG ;
Svitkina, TM .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (01) :104-112
[8]  
Bray D., 2001, CELL MOVEMENTS
[9]   Nonequilibrium-driven motion in actin networks: Comet tails and moving beads [J].
Burroughs, N. J. ;
Marenduzzo, D. .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[10]   Grabbing the cat by the tail: manipulating molecules one by one [J].
Bustamante C. ;
Macosko J.C. ;
Wuite G.J.L. .
Nature Reviews Molecular Cell Biology, 2000, 1 (2) :130-136