Low-cost stochastic number generator based on MRAM for stochastic computing

被引:0
作者
Wang, You [1 ]
Wu, Bi [1 ]
Cai, Hao [2 ]
Liu, Weiqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect Informat & Engn, Nanjing 210016, Peoples R China
[2] Southeast Univ, Sch Elect Sci & Engn, Nanjing 210096, Peoples R China
来源
PROCEEDINGS OF THE 17TH ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES, NANOARCH 2022 | 2022年
基金
中国国家自然科学基金;
关键词
Magnetic random access memory; high energy efficiency; stochastic computing; stochastic number converter; high speed;
D O I
10.1145/3565478.3572545
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic computing (SC) can transform the major operations of neural network, i.e. multiply-and-accumulate (MAC), into AND and multiplexer, which drastically reduce the hardware occupation and energy consumption. This paper proposes a novel design of SC for highly energy-efficient computing which combines the features of low power and stochastic switching of magnetic random access memory (MRAM) and the intrinsic fault-tolerance and simple arithmetic operations of SC. A simplified circuit of stochastic number generater (SNG) based on MRAM device is proposed to transform the binary bitstream into stochastic bitstream. Compared with the conventional SNGs, the proposed SNG reduces considerably the design complexity and saves the energy consumption in consequence. Furthermore, the performance is investigated in terms of accuracy and hardware occupation to explore the design space.
引用
收藏
页数:5
相关论文
共 18 条
[1]  
Alaghi A, 2013, DES AUT CON
[2]   VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing [J].
Ardakani, Arash ;
Leduc-Primeau, Francois ;
Onizawa, Naoya ;
Hanyu, Takahiro ;
Gross, Warren J. .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (10) :2688-2699
[3]   Robust Ultra-Low Power Non-Volatile Logic-in-Memory Circuits in FD-SOI Technology [J].
Cai, Hao ;
Wang, You ;
De Barros, Lirida Alves ;
Zhao, Weisheng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (04) :847-857
[4]   A New Stochastic Computing Methodology for Efficient Neural Network Implementation [J].
Canals, Vincent ;
Morro, Antoni ;
Oliver, Antoni ;
Alomar, Miquel L. ;
Rossello, Josep L. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (03) :551-564
[5]   Validity of the thermal activation model for spin-transfer torque switching in magnetic tunnel junctions [J].
Heindl, R. ;
Rippard, W. H. ;
Russek, S. E. ;
Pufall, M. R. ;
Kos, A. B. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[6]  
Ikeda S, 2010, NAT MATER, V9, P721, DOI [10.1038/NMAT2804, 10.1038/nmat2804]
[7]   Time-resolved reversal of spin-transfer switching in a nanomagnet [J].
Koch, RH ;
Katine, JA ;
Sun, JZ .
PHYSICAL REVIEW LETTERS, 2004, 92 (08)
[8]   High Quality Down-Sampling for Deterministic Approaches to Stochastic Computing [J].
Najafi, M. Hassan ;
Lilja, David J. .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (01) :7-14
[9]   Analog-to-Stochastic Converter Using Magnetic Tunnel Junction Devices for Vision Chips [J].
Onizawa, Naoya ;
Katagiri, Daisaku ;
Gross, Warren J. ;
Hanyu, Takahiro .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (05) :705-714
[10]   Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure [J].
Sato, H. ;
Yamanouchi, M. ;
Ikeda, S. ;
Fukami, S. ;
Matsukura, F. ;
Ohno, H. .
APPLIED PHYSICS LETTERS, 2012, 101 (02)