High-Rate, Ultra long Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene

被引:712
作者
Qiu, Yongcai [1 ]
Li, Wanfei [1 ]
Zhao, Wen [3 ]
Li, Guizhu [1 ]
Hou, Yuan [1 ]
Liu, Meinan [1 ]
Zhou, Lisha [1 ]
Ye, Fangmin [1 ]
Li, Hongfei [1 ]
Wei, Zhanhua [2 ]
Yang, Shihe [2 ]
Duan, Wenhui [3 ]
Ye, Yifan [4 ]
Guo, Jinghua [4 ]
Zhang, Yuegang [1 ,3 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, I LAB, Suzhou 215123, Jiangsu, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
基金
中国博士后科学基金;
关键词
Nitrogen-doped graphene; sulfur nanoparticles; specific capacity; cycle life; lithium/sulfur batteries; CHEMICAL-VAPOR-DEPOSITION; SULFUR BATTERIES; CATHODE MATERIAL; S BATTERIES; ELECTRICAL-PROPERTIES; ROOM-TEMPERATURE; LI/S BATTERIES; HIGH-CAPACITY; COMPOSITE; PERFORMANCE;
D O I
10.1021/nl5020475
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped graphene (NG) is a promising conductive matrix material for fabricating high-performance Li/S batteries. Here we report a simple, low-cost, and scalable method to prepare an additive-free nanocomposite cathode in which sulfur nanoparticles are wrapped inside the NG sheets (S@NG). We show that the Li/S@NG can deliver high specific discharge capacities at high rates, that is, similar to 1167 mAh g(-1) at 0.2 C, similar to 1058 mAh g(-1) at 0.5 C, similar to 971 mAh g(-1) at 1 C, similar to 802 mAh g(-1) at 2 C, and similar to 606 mAh g(-1) at 5 C. The cells also demonstrate an ultralong cycle life exceeding 2000 cycles and an extremely low capacity-decay rate (0.028% per cycle), which is among the best performance demonstrated so far for Li/S cells. Furthermore, the S@NG cathode can be cycled with an excellent Coulombic efficiency of above 97% after 2000 cycles. With a high active S content (6096) in the total electrode weight, the S@NG cathode could provide a specific energy that is competitive to the state-of-the-art Li-ion cells even after 2000 cycles. The X-ray spectroscopic analysis and ab initio calculation results indicate that the excellent performance can be attributed to the well-restored C C lattice and the unique lithium polysulfide binding capability of the N functional groups in the NG sheets. The results indicate that the S@NG nanocomposite based Li/S cells have a great potential to replace the current Li-ion batteries.
引用
收藏
页码:4821 / 4827
页数:7
相关论文
共 56 条
[1]   A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery [J].
Barghamadi, Marzieh ;
Kapoor, Ajay ;
Wen, Cuie .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1256-A1263
[2]   Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
CHEMICAL COMMUNICATIONS, 2013, 49 (90) :10545-10562
[3]   Nanostructured Li2S-C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries [J].
Cai, Kunpeng ;
Song, Min-Kyu ;
Cairns, Elton J. ;
Zhang, Yuegang .
NANO LETTERS, 2012, 12 (12) :6474-6479
[4]   Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries [J].
Chen, Renjie ;
Zhao, Teng ;
Lu, Jun ;
Wu, Feng ;
Li, Li ;
Chen, Junzheng ;
Tan, Guoqiang ;
Ye, Yusheng ;
Amine, Khalil .
NANO LETTERS, 2013, 13 (10) :4642-4649
[5]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[6]   Lithium-Sulfur Battery Cathode Enabled by Lithium-Nitrile Interaction [J].
Guo, Juchen ;
Yang, Zichao ;
Yu, Yingchao ;
Abruna, Hector D. ;
Archer, Lynden A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) :763-767
[7]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[8]   One-Dimensional Carbon-Sulfur Composite Fibers for Na-S Rechargeable Batteries Operating at Room Temperature [J].
Hwang, Tae Hoon ;
Jung, Dae Soo ;
Kim, Joo-Seong ;
Kim, Byung Gon ;
Choi, Jang Wook .
NANO LETTERS, 2013, 13 (09) :4532-4538
[9]   Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J].
Jayaprakash, N. ;
Shen, J. ;
Moganty, Surya S. ;
Corona, A. ;
Archer, Lynden A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5904-5908
[10]   Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells [J].
Ji, Liwen ;
Rao, Mumin ;
Zheng, Haimei ;
Zhang, Liang ;
Li, Yuanchang ;
Duan, Wenhui ;
Guo, Jinghua ;
Cairns, Elton J. ;
Zhang, Yuegang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (46) :18522-18525