Modeling and Simulation of MEMS-Based Piezoelectric Energy Harvester

被引:0
作者
Dao Ngoc Tuan [1 ]
Le Phuoc Thanh Quang [1 ]
Than Hong Phuc [1 ]
Tran Thi Tra Vinh [1 ]
Hoang Huu Duc [1 ]
Nguyen Vu Anh Quang [1 ]
Tran The Son [1 ]
机构
[1] Univ Danang, Vietnam Korea Univ Informat & Commun Technol VKU, Ngu Hanh Son, Danang, Vietnam
来源
2022 INTERNATIONAL CONFERENCE ON IC DESIGN AND TECHNOLOGY (ICICDT) | 2022年
关键词
Piezoelectric; MEMS; Energy Harvesting; VIBRATION; GENERATOR;
D O I
10.1109/ICICDT56182.2022.9933115
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Vibration-based energy harvesting converts surrounding kinetic energy in the form of structural or mechanical vibrations, human movement, and flow into electrical energy. This could be a promising alternative to reduce the maintenance cost and chemical waste of batteries and eventually achieve self-powered electronics and wireless sensor nodes. Energy transfer mechanisms (ETMs) such as piezoelectric, electromagnetic and electrostatic are incorporated into the system to maximize the combined energy from the surroundings. In this paper, the working principle of piezoelectric energy converter is introduced and investigated. Piezoelectric energy harvester based on typical MEMS is considered. A basic MEMS cantilever model is used to measure the optimal parameter. The model is using one layer of Piezoelectric on top of a Brass subtrade, and the result is verified by finite element analysis in COMSOL Multiphysics and NanoHub. The simulated MEMS can generate a voltage of 1.7-1.9 mV and output power 0.074 uW. An array of these devices can be used to increase the supplied power to Internet of Things (IoT) sensors.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 23 条
[1]  
[Anonymous], 2011, PIEZOELECTRIC ENERGY, DOI DOI 10.1002/9781119991151.APP1
[2]  
[Anonymous], 1988, IEEE Std 176, DOI 10.1109/IEEESTD.1988.79638
[3]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[4]   Modelling piezoelectric modules with interdigitated electrode structures [J].
Beckert, W ;
Kreher, WS .
COMPUTATIONAL MATERIALS SCIENCE, 2003, 26 :36-45
[5]  
Blevins R.D., 1979, Formulas for natural frequency and mode shape
[6]   Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites [J].
Bowen, C. R. ;
Nelson, L. J. ;
Stevens, R. ;
Cain, M. G. ;
Stewart, M. .
JOURNAL OF ELECTROCERAMICS, 2006, 16 (04) :263-269
[7]   Piezoelectric and ferroelectric materials and structures for energy harvesting applications [J].
Bowen, C. R. ;
Kim, H. A. ;
Weaver, P. M. ;
Dunn, S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :25-44
[8]   Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting [J].
Fang, Hua-Bin ;
Liu, Jing-Quan ;
Xu, Zheng-Yi ;
Dong, Lu ;
Wang, Li ;
Chen, Di ;
Cai, Bing-Chu ;
Liu, Yue .
MICROELECTRONICS JOURNAL, 2006, 37 (11) :1280-1284
[9]  
Ghodssi R, 2011, MEMS REF SHELF, P1, DOI 10.1007/978-0-387-47318-5
[10]   Piezoelectric energy harvesting [J].
Howells, Christopher A. .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (07) :1847-1850