Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors

被引:171
作者
Xiao, Xu [1 ,2 ]
Li, Tianqi [1 ]
Peng, Zehua [1 ]
Jin, Huanyu [1 ]
Zhong, Qize [1 ]
Hu, Qiyi [1 ]
Yao, Bin [1 ]
Luo, Qiuping [1 ]
Zhang, Chuanfang [2 ]
Gong, Li [3 ]
Chen, Jian [3 ]
Gogotsi, Yury [2 ]
Zhou, Jun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Drexel Univ, AJ Drexel Nanomat Inst, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Sun Yat Sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Functionalization; Carbon nanotube; Freestanding; Asymmetric supercapacitor; ELECTROCHEMICAL ENERGY-STORAGE; SELF-POWERED SYSTEMS; FLEXIBLE SUPERCAPACITORS; HIGH-PERFORMANCE; MICRO-SUPERCAPACITORS; HYBRID ELECTRODES; FACILE SYNTHESIS; GRAPHENE; PAPER; CAPACITANCE;
D O I
10.1016/j.nanoen.2014.02.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, many attempts have been made to increase the specific capacitance of carbon nanotubes (CNTs). Chemical enhancement by adding redox active functional groups on CNTs increases the specific capacitance, while excessive oxidation decreases conductivity and leads to poor cycle life. Here we report the electrochemical enhancement methods followed by annealing at different temperatures in air to add and adjust the redox active functional groups on freestanding CNT films. Functionalized freestanding CNT films were used as positive electrodes, assembled with freestanding CNT/MoO3-x negative electrodes to fabricate carbon nanotube-based solid-state asymmetric supercapacitors (ASCs). The whole device showed a high volumetric capacitance of 3.0 F cm(-3), energy and power density of 1.5 mWh cm(-3) and 4.2 W cm(-3), respectively. We also fabricated a SCs pack to drive a homemade wireless transport system successfully, demonstrating the potential applications of this solid-state system for portable/wearable electronics. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 42 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites [J].
Banks, CE ;
Davies, TJ ;
Wildgoose, GG ;
Compton, RG .
CHEMICAL COMMUNICATIONS, 2005, (07) :829-841
[3]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[4]   An Integrated "Energy Wire" for both Photoelectric Conversion and Energy Storage [J].
Chen, Tao ;
Qiu, Longbin ;
Yang, Zhibin ;
Cai, Zhenbo ;
Ren, Jing ;
Li, Houpu ;
Lin, Huijuan ;
Sun, Xuemei ;
Peng, Huisheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (48) :11977-11980
[5]   Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
SCIENCE, 2010, 328 (5977) :480-483
[6]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[7]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[8]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[9]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[10]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918