Out-of-sample data visualization using bi-kernel t-SNE

被引:7
|
作者
Zhang, Haili [1 ,2 ,3 ]
Wang, Pu [1 ,2 ,3 ]
Gao, Xuejin [1 ,2 ,3 ]
Qi, Yongsheng [4 ]
Gao, Huihui [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
[3] Beijing Lab Urban Mass Transit, Beijing, Peoples R China
[4] Inner Mongolia Univ Technol, Sch Elect Power, Hohhot, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Data visualization; dimensionality reduction; T-SNE; out-of-sample extension; outlier projection; PRINCIPAL COMPONENT ANALYSIS; DIMENSIONALITY REDUCTION; ISOMAP;
D O I
10.1177/1473871620978209
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
T-distributed stochastic neighbor embedding (t-SNE) is an effective visualization method. However, it is non-parametric and cannot be applied to steaming data or online scenarios. Although kernel t-SNE provides an explicit projection from a high-dimensional data space to a low-dimensional feature space, some outliers are not well projected. In this paper, bi-kernel t-SNE is proposed for out-of-sample data visualization. Gaussian kernel matrices of the input and feature spaces are used to approximate the explicit projection. Then principal component analysis is applied to reduce the dimensionality of the feature kernel matrix. Thus, the difference between inliers and outliers is revealed. And any new sample can be well mapped. The performance of the proposed method for out-of-sample projection is tested on several benchmark datasets by comparing it with other state-of-the-art algorithms.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 50 条
  • [21] Shape Pattern Recognition of Building Footprints Using t-SNE Dimensionality Reduction Visualization
    Li, Jingzhong
    Mao, Kainan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (06)
  • [22] New guidance for using t-SNE: Alternative defaults, hyperparameter selection automation, and comparative evaluation
    Gove, Robert
    Cadalzo, Lucas
    Leiby, Nicholas
    Singer, Jedediah M.
    Zaitzeff, Alexander
    VISUAL INFORMATICS, 2022, 6 (02) : 87 - 97
  • [23] ISOMAP OUT-OF-SAMPLE EXTENSION FOR NOISY TIME SERIES DATA
    Dadkhahi, Hamid
    Duarte, Marco F.
    Marlin, Benjamin
    2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2015,
  • [24] S plus t-SNE - Bringing Dimensionality Reduction to Data Streams
    Vieira, Pedro C.
    Montrezol, Joao P.
    Vieira, Joao T.
    Gama, Joao
    ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT II, IDA 2024, 2024, 14642 : 95 - 106
  • [25] t-SNE-PSO: Optimizing t-SNE using particle swarm optimization
    Allaoui, Mebarka
    Belhaouari, Samir Brahim
    Hedjam, Rachid
    Bouanane, Khadra
    Kherfi, Mohammed Lamine
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 269
  • [26] Nonlinear Manifold Embedding on Keyword Spotting using t-SNE
    Retsinas, George
    Stamatopoulos, Nikolaos
    Louloudis, Georgios
    Sfikas, Giorgos
    Gatos, Basilis
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 487 - 492
  • [27] Visualizing Time Series Data with Temporal Matching Based t-SNE
    Wong, Kwan Yeung
    Chung, Fu-lai
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [28] Stability analysis of the t-SNE algorithm for human activity pattern data
    Hamad, Rebeen Ali
    Jarpe, Eric
    Lundstrom, Jens
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 1839 - 1845
  • [29] t-SNE: A study on reducing the dimensionality of hyperspectral data for the regression problem of estimating oenological parameters
    Silva, Rui
    Melo-Pinto, Pedro
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2023, 7 : 58 - 68
  • [30] Polygonal Coordinate System: Visualizing high-dimensional data using geometric DR, and a deterministic version of t-SNE
    Flexa, Caio
    Gomes, Walisson
    Moreira, Igor
    Alves, Ronnie
    Sales, Claudomiro
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 175