Out-of-sample data visualization using bi-kernel t-SNE

被引:7
|
作者
Zhang, Haili [1 ,2 ,3 ]
Wang, Pu [1 ,2 ,3 ]
Gao, Xuejin [1 ,2 ,3 ]
Qi, Yongsheng [4 ]
Gao, Huihui [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Minist Educ, Engn Res Ctr Digital Community, Beijing, Peoples R China
[3] Beijing Lab Urban Mass Transit, Beijing, Peoples R China
[4] Inner Mongolia Univ Technol, Sch Elect Power, Hohhot, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
Data visualization; dimensionality reduction; T-SNE; out-of-sample extension; outlier projection; PRINCIPAL COMPONENT ANALYSIS; DIMENSIONALITY REDUCTION; ISOMAP;
D O I
10.1177/1473871620978209
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
T-distributed stochastic neighbor embedding (t-SNE) is an effective visualization method. However, it is non-parametric and cannot be applied to steaming data or online scenarios. Although kernel t-SNE provides an explicit projection from a high-dimensional data space to a low-dimensional feature space, some outliers are not well projected. In this paper, bi-kernel t-SNE is proposed for out-of-sample data visualization. Gaussian kernel matrices of the input and feature spaces are used to approximate the explicit projection. Then principal component analysis is applied to reduce the dimensionality of the feature kernel matrix. Thus, the difference between inliers and outliers is revealed. And any new sample can be well mapped. The performance of the proposed method for out-of-sample projection is tested on several benchmark datasets by comparing it with other state-of-the-art algorithms.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 50 条
  • [1] Parametric nonlinear dimensionality reduction using kernel t-SNE
    Gisbrecht, Andrej
    Schulz, Alexander
    Hammer, Barbara
    NEUROCOMPUTING, 2015, 147 : 71 - 82
  • [2] Parallel t-SNE Applied to Data Visualization in Smart Cities
    Da Silva Lopes, Maximiliano Araujo
    Doria Neto, Adriao D.
    De Medeiros Martins, Allan
    IEEE ACCESS, 2020, 8 : 11482 - 11490
  • [3] Visualizing Data using t-SNE
    van der Maaten, Laurens
    Hinton, Geoffrey
    JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 2579 - 2605
  • [4] Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE
    Melit Devassy, Binu
    George, Sony
    Nussbaum, Peter
    JOURNAL OF IMAGING, 2020, 6 (05)
  • [5] Laplacian-based Cluster-Contractive t-SNE for High-Dimensional Data Visualization
    Sun, Yan
    Han, Yi
    Fan, Jicong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (01)
  • [6] An Empirical Evaluation of the t-SNE Algorithm for Data Visualization in Structural Engineering
    Hajibabaee, Parisa
    Pourkamali-Anaraki, Farhad
    Hariri-Ardebili, Mohammad Amin
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1674 - 1680
  • [7] Evaluating the Effects of Missing Values and Mixed Data Types on Social Sequence Clustering Using t-SNE Visualization
    Lazar, Alina
    Jin, Ling
    Spurlock, C. Anna
    Wu, Kesheng
    Sim, Alex
    Todd, Annika
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2019, 11 (02):
  • [8] Dimensionality reduction and visualisation of hyperspectral ink data using t-SNE
    Devassy, Binu Melit
    George, Sony
    FORENSIC SCIENCE INTERNATIONAL, 2020, 311
  • [9] Visualization and Detection of Changes in Brain States Using t-SNE
    Parmar, Harshit S.
    Mitra, Sunanda
    Nutter, Brian
    Long, Rodney
    Antani, Sameer
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 14 - 17
  • [10] t-SNE Visualization of Large-Scale Neural Recordings
    Dimitriadis, George
    Neto, Joana P.
    Kampff, Adam R.
    NEURAL COMPUTATION, 2018, 30 (07) : 1750 - 1774