Wave propagation in heterogeneous media.: Part 2:: attenuation of seismic waves due to scattering

被引:0
|
作者
Müller, TM [1 ]
Sick, C [1 ]
Shapiro, SA [1 ]
机构
[1] Free Univ Berlin, Fachrichtung Geophys, D-12249 Berlin, Germany
来源
HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING 01 | 2002年
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a scattering attenuation model based on the statistical wave propagation theory in random media. It is suitable for the weak wavefield fluctuation regime and has practically no restriction in the frequency domain. The presented formulas allow to quantify scattering attenuation in complex geological regions using simple statistical estimates from well-log data. This knowledge is important for further petrophysical interpretations of reservoir rocks. To test our theory we perform numerical simulations of seismic wave propagation in 3-D elastic random media using a finite-difference solution of the elastodynamic wave equation. From the synthetic seismograms we determine the scattering attenuation (Q(-1)) with help of spectral decay methods. We find good agreement of the frequency-dependent Q values and the theoretical predictions.
引用
收藏
页码:476 / 482
页数:3
相关论文
共 50 条
  • [1] Wave propagation in heterogeneous media. Part 1: Effective velocities in fractured media
    Saenger, EH
    Priller, H
    Grosse, C
    Hubral, P
    Shapiro, SA
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING 01, 2002, : 469 - 475
  • [2] ATTENUATION OF SEISMIC WAVES DUE TO WAVE-INDUCED FLOW AND SCATTERING IN RANDOMLY HETEROGENEOUS POROELASTIC CONTINUA
    Mueller, Tobias M.
    Gurevich, Boris
    Shapiro, Serge A.
    ADVANCES IN GEOPHYSICS, VOL 50: EARTH HETEROGENEITY AND SCATTERING EFFECTS ON SEISMIC WAVES, 2008, 50 : 123 - 166
  • [3] INSITU INVESTIGATION OF SEISMIC BODY WAVE-PROPAGATION AND ATTENUATION IN HETEROGENEOUS MEDIA
    NEWMAN, PJ
    WORTHINGTON, MH
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1980, 61 (01): : 218 - 218
  • [4] Radiative transfer for wave propagation in random media. Monte Carlo simulations of seismic waves
    Bal, G
    Moscoso, M
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 559 - 563
  • [5] Propagation of Seismic Wave Fields in Layered Media. II
    G. I. Petrashen
    Journal of Mathematical Sciences, 2003, 117 (1) : 3805 - 3872
  • [6] Analytical Solution for Waves Propagation in Heterogeneous Acoustic/Porous Media. Part I: The 2D Case
    Diaz, Julien
    Ezziani, Abdelaaziz
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (01) : 171 - 194
  • [7] Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media
    Mueller, Tobias M.
    Sahay, Pratap N.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 129 (05): : 2785 - 2796
  • [8] Attenuation of Strong Shock Waves in Two-Phase and Heterogeneous Media.
    Al'tshuler, L.V.
    Kruglikov, B.S.
    PMTF, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 1984, (05): : 24 - 29
  • [9] Propagation of seismic waves in block elastic-fluid media. III
    Molotkov L.A.
    Journal of Mathematical Sciences, 2006, 132 (1) : 83 - 90
  • [10] Propagation of seismic waves in block elastic-fluid media. I
    Molotkov L.A.
    Journal of Mathematical Sciences, 2005, 127 (6) : 2469 - 2481