Transport of intensity equation: Validity limits of the usually accepted solution

被引:14
作者
Ferrari, Jose A. [1 ]
Ayubi, Gaston A. [1 ]
Flores, Jorge L. [2 ]
Perciante, Cesar D. [3 ]
机构
[1] Fac Ingn, Inst Fis, Montevideo 11300, Uruguay
[2] Univ Guadalajara, Dept Elect Engn, Guadalajara 44840, Jalisco, Mexico
[3] Univ Catolica Uruguay, Fac Ingn & Tecnol, Montevideo, Uruguay
关键词
Phase retrieval; Transport of intensity equation (TIE); PHASE RETRIEVAL;
D O I
10.1016/j.optcom.2013.12.060
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The transport of intensity equation (TIE) is the basis of a powerful non-interferometric technique for phase retrieval. When intensity gradients are present, the generalized belief is that the solution of the TIE (i.e. the phase distribution) can be found by solving two Poisson equations. In the present paper we will demonstrate that this expression for the TIE solution holds when intensity and phase gradients are parallel (or null), but in general the usually accepted solution is not correct. We perform simulations with arbitrary intensity and phase functions in order to show the phase errors derived from the use of this expression. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:133 / 136
页数:4
相关论文
共 14 条
[1]   On the Use of Low-Pass Filters for Image Processing with Inverse Laplacian Models [J].
Ali, Rehan ;
Szilagyi, Tunde ;
Gooding, Mark ;
Christlieb, Martin ;
Brady, Michael .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 43 (02) :156-165
[2]   Optimisation of phase imaging geometry [J].
Arhatari, B. D. ;
Peele, A. G. .
OPTICS EXPRESS, 2010, 18 (23) :23727-23739
[3]   Quantitative optical phase microscopy [J].
Barty, A ;
Nugent, KA ;
Paganin, D ;
Roberts, A .
OPTICS LETTERS, 1998, 23 (11) :817-819
[4]   Phase retrieval with the transport-of-intensity equation .2. Orthogonal series solution for nonuniform illumination [J].
Gureyev, TE ;
Nugent, KA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (08) :1670-1682
[5]   Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging [J].
Kou, Shan Shan ;
Waller, Laura ;
Barbastathis, George ;
Sheppard, Colin J. R. .
OPTICS LETTERS, 2010, 35 (03) :447-449
[6]   Single-shot phase recovery using two laterally separated defocused images [J].
Matias Di Martino, J. ;
Ayubi, Gaston A. ;
Dalchiele, Enrique A. ;
Alonso, Julia R. ;
Fernandez, Ariel ;
Flores, Jorge L. ;
Perciante, Cesar D. ;
Ferrari, Jose A. .
OPTICS COMMUNICATIONS, 2013, 293 :1-3
[7]   Quantitative phase imaging using hard x rays [J].
Nugent, KA ;
Gureyev, TE ;
Cookson, DF ;
Paganin, D ;
Barnea, Z .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2961-2964
[8]   Noninterferometric phase imaging with partially coherent light [J].
Paganin, D ;
Nugent, KA .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2586-2589
[9]   The transport of intensity equation for optical path length recovery using partially coherent illumination [J].
Petruccelli, Jonathan C. ;
Tian, Lei ;
Barbastathis, George .
OPTICS EXPRESS, 2013, 21 (12) :14430-14441
[10]   Topography retrieval using different solutions of the transport intensity equation [J].
Pinhasi, Shirly V. ;
Alimi, Roger ;
Perelmutter, Lior ;
Eliezer, Shalom .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (10) :2285-2292