Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate)/Graphene Oxide Nanocomposites

被引:21
作者
Szymczyk, Anna [1 ]
Paszkiewicz, Sandra [2 ]
Pawelec, Iwona [1 ]
Lisiecki, Slawomir [3 ]
Jotko, Marek [3 ]
Spitalsky, Zdenko [4 ]
Mosnacek, Jaroslav [4 ]
Roslaniec, Zbigniew [2 ]
机构
[1] West Pomeranian Univ Technol, Inst Phys, PL-70310 Szczecin, Poland
[2] West Pomeranian Univ Technol, Inst Mat Sci & Engn, PL-70310 Szczecin, Poland
[3] West Pomeranian Univ Technol, Fac Food Sci & Fisheries, Ctr Bioimmobilisat & Innovat Packaging Mat, PL-71270 Szczecin, Poland
[4] Slovak Acad Sci, Inst Polymer, Bratislava 84541 45, Slovakia
关键词
CARBON NANOTUBES; GRAPHENE OXIDE; SEMICRYSTALLINE POLYMERS; EPITAXIAL GRAPHENE; CHEMICAL-REDUCTION; THERMAL-PROPERTIES; GRAPHITE; CONDUCTIVITY; SHEETS; GAS;
D O I
10.1155/2015/382610
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Poly(ethylene terephthalate) nanocomposites with low loading (0.1-0.5 wt%) of graphene oxide (GO) have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2-3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt%) showed almost similar values of the long period (L = 11.4 nm for neat PET and L = 11.5 nm for PET/0.5GO).
引用
收藏
页数:10
相关论文
共 61 条
[1]   Graphene/Polyaniline Nanocomposite for Hydrogen Sensing [J].
Al-Mashat, Laith ;
Shin, Koo ;
Kalantar-zadeh, Kourosh ;
Plessis, Johan D. ;
Han, Seung H. ;
Kojima, Robert W. ;
Kaner, Richard B. ;
Li, Dan ;
Gou, Xinglong ;
Ippolito, Samuel J. ;
Wlodarski, Wojtek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16168-16173
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Modeling the barrier properties of polymer-layered silicate nanocomposites [J].
Bharadwaj, RK .
MACROMOLECULES, 2001, 34 (26) :9189-9192
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Graphite oxide:: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids [J].
Bourlinos, AB ;
Gournis, D ;
Petridis, D ;
Szabó, T ;
Szeri, A ;
Dékány, I .
LANGMUIR, 2003, 19 (15) :6050-6055
[7]  
Brolly JB, 1996, J POLYM SCI POL PHYS, V34, P761, DOI 10.1002/(SICI)1099-0488(199603)34:4<761::AID-POLB17>3.0.CO
[8]  
2-F
[9]   Growing graphene sheets from reactions with methyl radicals: A quantum chemical study [J].
Carissan, Yannick ;
Klopper, Wim .
CHEMPHYSCHEM, 2006, 7 (08) :1770-1778
[10]   Permeability of polymer/clay nanocomposites: A review [J].
Choudalakis, G. ;
Gotsis, A. D. .
EUROPEAN POLYMER JOURNAL, 2009, 45 (04) :967-984