A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries

被引:32
作者
Cai, Daoping [1 ]
Yang, Ting [2 ,3 ]
Liu, Bin [1 ]
Wang, Dandan [1 ]
Liu, Yuan [1 ]
Wang, Lingling [1 ]
Li, Qiuhong [1 ]
Wang, Taihong [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361000, Peoples R China
[2] Hunan Univ, Key Lab Micronano Optoelect Devices, Minist Educ, Changsha 410082, Hunan, Peoples R China
[3] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
GAS-SENSING PROPERTIES; ANATASE TIO2 NANOSHEETS; CYCLIC PERFORMANCE; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; STORAGE CAPACITY; COMPOSITE; NANOPARTICLES; SURFACES; OXIDE;
D O I
10.1039/c4ta01850h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis of nanocrystals with high-energy facets is an important and challenging research topic. In this work, we develop a facile hydrothermal method to synthesize a nanocomposite of SnO2 octahedral nanocrystals (ONCs) exposed to high-energy {332} facets on graphene sheets (GS) as an advanced anode material for high performance lithium-ion batteries (LIBs). Electrochemical characterization of SnO2 ONCs/GS nanocomposite shows that it exhibits much enhanced Li-battery performance compared with a nanocomposite of SnO2 nanoparticles (NPs) exposed to stable facets on GS. The as-prepared SnO2 ONCs/GS nanocomposite has a reversible discharge capacity of as high as 844 mA h g(-1) after 50 cycles at a current density of 100 mA h g(-1). Even at a higher current density of 5000 mA g(-1), the discharge capacity of the SnO2 ONCs/GS nanocomposite is still as high as approximately 555 mA h g(-1), indicating good rate capability. These excellent results are attributed to the exposure of SnO2 ONCs to high-energy facets, and the rational growth of the SnO2 ONCs on GS. It is believed that the SnO2 ONCs/GS nanocomposite hold great promise for applications in high performance LIBs.
引用
收藏
页码:13990 / 13995
页数:6
相关论文
共 46 条
  • [1] SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. SMALL, 2013, 9 (11) : 1877 - 1893
  • [2] Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties
    Chen, Jun Song
    Ng, Mei Feng
    Wu, Hao Bin
    Zhang, Lei
    Lou, Xiong Wen
    [J]. CRYSTENGCOMM, 2012, 14 (16): : 5133 - 5136
  • [3] SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries
    Chen, Jun Song
    Archer, Lynden A.
    Lou, Xiong Wen
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) : 9912 - 9924
  • [4] Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage
    Chen, Jun Song
    Tan, Yi Ling
    Li, Chang Ming
    Cheah, Yan Ling
    Luan, Deyan
    Madhavi, Srinivasan
    Boey, Freddy Yin Chiang
    Archer, Lynden A.
    Lou, Xiong Wen
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) : 6124 - 6130
  • [5] Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (12) : 2332 - 2335
  • [6] Synthesis of micro-sized SnO2@carbon hollow spheres with enhanced lithium storage properties
    Ding, Shujiang
    Zhang, Dongyang
    Wu, Hao Bin
    Zhang, Zhicheng
    Lou, Xiong Wen
    [J]. NANOSCALE, 2012, 4 (12) : 3651 - 3654
  • [7] SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties
    Ding, Shujiang
    Luan, Deyan
    Boey, Freddy Yin Chiang
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (25) : 7155 - 7157
  • [8] Lithium storage in carbon-coated SnO2 by conversion reaction
    Guo, X. W.
    Fang, X. P.
    Sun, Y.
    Shen, L. Y.
    Wang, Z. X.
    Chen, L. Q.
    [J]. JOURNAL OF POWER SOURCES, 2013, 226 : 75 - 81
  • [9] Synthesis of Tin Dioxide Nanooctahedra with Exposed High-Index {332} Facets and Enhanced Selective Gas Sensing Properties
    Han, Xiguang
    Li, Liang
    Wang, Chao
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2012, 7 (07) : 1572 - 1575
  • [10] Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed High-Energy {221} Facets and Enhanced Gas-Sensing Properties
    Han, Xiguang
    Jin, Mingshang
    Xie, Shuifen
    Kuang, Qin
    Jiang, Zhiyuan
    Jiang, Yaqi
    Xie, Zhaoxiong
    Zheng, Lansun
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (48) : 9180 - 9183