The bipolar Choquet integral representation

被引:8
作者
Greco, Salvatore [1 ,2 ]
Rindone, Fabio [1 ]
机构
[1] Univ Catania, Dept Econ & Business, I-95129 Catania, Italy
[2] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 3DE, Hants, England
关键词
Cumulative Prospect Theory; Gains-loss separability; bi-Weighting function; Bipolar Choquet integral; PROBABILITY-WEIGHTING FUNCTION; PARAMETER-FREE ELICITATION; CUMULATIVE PROSPECT-THEORY; GAIN-LOSS SEPARABILITY; ST-PETERSBURG PARADOX; RISKY DECISION-MAKING; EXPECTED UTILITY; BI-CAPACITIES; UNCERTAINTY; ADDITIVITY;
D O I
10.1007/s11238-013-9390-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
Cumulative Prospect Theory is the modern version of Prospect Theory and it is nowadays considered a valid alternative to the classical Expected Utility Theory. Cumulative Prospect theory implies Gain-Loss Separability, i.e., the separate evaluation of losses and gains within a mixed gamble. Recently, some authors have questioned this assumption of the theory, proposing new paradoxes where the Gain-Loss Separability is violated. We present a generalization of Cumulative Prospect Theory which does not imply Gain-Loss Separability and is able to explain the cited paradoxes. On the other hand, the new model, which we call the bipolar Cumulative Prospect Theory, genuinely generalizes the original Prospect Theory of Kahneman and Tversky, preserving the main features of the theory. We present also a characterization of the bipolar Choquet Integral with respect to a bi-capacity in a discrete setting.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 39 条