Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation

被引:37
作者
Otani, Satoshi [1 ]
Hiramatsu, Kazufumi [2 ]
Hashinaga, Kazuhiko [1 ]
Komiya, Kosaku [1 ]
Umeki, Kenji [1 ]
Kishi, Kenji [1 ]
Kadota, Jun-ichi [1 ]
机构
[1] Oita Univ, Fac Med, Dept Resp Med & Infect Dis, Oita 8795593, Japan
[2] Oita Univ, Fac Med, Dept Med Safety Management, Oita 8795593, Japan
关键词
Sub-minimum inhibitory concentrations; Ceftazidime; Pseudomonas aeruginosa; Biofilm; TWITCHING MOTILITY; OUTER-MEMBRANE; EXPRESSION; LECTIN; LECB;
D O I
10.1016/j.jiac.2018.01.007
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Pseudomonas aeruginosa exhibits the biofilm mode of growth and causes chronic as well as acute infections in humans. Several reports have shown that the treatments with sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents influence biofilm formation by P. aeruginosa. The antibiotic ceftazidime (CAZ) is used to treat P. aeruginosa infections, but few studies have examined the effects of beta-lactams on biofilm formation by P. aeruginosa. In this study, we investigated the role of sub-MICs of CAZ in the formation of P. aeruginosa biofilms. 1/4 x MIC CAZ reduced the biofilm volume of P. aeruginosa PAO1, as quantified by crystal violet staining. The formation of P. aeruginosa PAO1 biofilms treated with 1/4 x MIC CAZ were observed by confocal laser scanning microscopy. They were more heterogeneous than the PAO1 biofilms without CAZ treatment. Furthermore, sub-MICs of CAZ inhibited the twitching motility, which played an important role in mature biofilm formation. 1/4 x MIC CAZ also reduced the gene expressions of lecA, lecB, pel and psl, which mediate the adhesion and polysaccharide matrix synthesis of P. aeruginosa. These effects suggest that sub-MICs of CAZ may affect a number of stages of biofilm formation. Investigating the effects of sub-MIC antibiotics on targeted bacterial biofilm may lead to the development of future antibiotic treatment modalities. (C) 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:428 / 433
页数:6
相关论文
共 29 条
[1]   The Sigma Factor AlgU Plays a Key Role in Formation of Robust Biofilms by Nonmucoid Pseudomonas aeruginosa [J].
Bazire, Alexis ;
Shioya, Kouki ;
Soum-Soutera, Emmanuelle ;
Bouffartigues, Emeline ;
Ryder, Cynthia ;
Guentas-Dombrowsky, Linda ;
Hemery, Gaelle ;
Linossier, Isabelle ;
Chevalier, Sylvie ;
Wozniak, Daniel J. ;
Lesouhaitier, Olivier ;
Dufour, Alain .
JOURNAL OF BACTERIOLOGY, 2010, 192 (12) :3001-3010
[2]   Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production [J].
Byrd, Matthew S. ;
Sadovskaya, Irina ;
Vinogradov, Evgueny ;
Lu, Haiping ;
Sprinkle, April B. ;
Richardson, Stephen H. ;
Ma, Luyan ;
Ralston, Brad ;
Parsek, Matthew R. ;
Anderson, Erin M. ;
Lam, Joseph S. ;
Wozniak, Daniel J. .
MOLECULAR MICROBIOLOGY, 2009, 73 (04) :622-638
[3]   The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms [J].
Ceri, H ;
Olson, ME ;
Stremick, C ;
Read, RR ;
Morck, D ;
Buret, A .
JOURNAL OF CLINICAL MICROBIOLOGY, 1999, 37 (06) :1771-1776
[4]   Role of LecA and LecB Lectins in Pseudomonas aeruginosa-Induced Lung Injury and Effect of Carbohydrate Ligands [J].
Chemani, Chanez ;
Imberty, Anne ;
de Bentzmann, Sophie ;
Pierre, Maud ;
Wimmerova, Michaela ;
Guery, Benoit P. ;
Faure, Karine .
INFECTION AND IMMUNITY, 2009, 77 (05) :2065-2075
[5]   The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix [J].
Colvin, Kelly M. ;
Irie, Yasuhiko ;
Tart, Catherine S. ;
Urbano, Rodolfo ;
Whitney, John C. ;
Ryder, Cynthia ;
Howell, P. Lynne ;
Wozniak, Daniel J. ;
Parsek, Matthew R. .
ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (08) :1913-1928
[6]   The Pel Polysaccharide Can Serve a Structural and Protective Role in the Biofilm Matrix of Pseudomonas aeruginosa [J].
Colvin, Kelly M. ;
Gordon, Vernita D. ;
Murakami, Keiji ;
Borlee, Bradley R. ;
Wozniak, Daniel J. ;
Wong, Gerard C. L. ;
Parsek, Matthew R. .
PLOS PATHOGENS, 2011, 7 (01)
[7]   Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa [J].
Corbella, ME ;
Puyet, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (04) :2269-2275
[8]   The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa [J].
Diggle, Stephen P. ;
Stacey, Rachael E. ;
Dodd, Christine ;
Cámara, Miguel ;
Williams, Paul ;
Winzer, Klaus .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (06) :1095-1104
[9]   Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl [J].
Franklin, Michael J. ;
Nivens, David E. ;
Weadge, Joel T. ;
Howell, P. Lynne .
FRONTIERS IN MICROBIOLOGY, 2011, 2
[10]   Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms [J].
Friedman, L ;
Kolter, R .
MOLECULAR MICROBIOLOGY, 2004, 51 (03) :675-690