The guanidino-group modifying enzymes: Structural basis for their diversity and commonality

被引:46
作者
Shirai, Hiroki
Mokrab, Younes
Mizuguchi, Kenji
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB2 1GA, England
关键词
structure-based alignment; enzyme mechanism; catalytic reaction; alpha/beta propeller; fold recognition;
D O I
10.1002/prot.20863
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The guanidino-group modifying enzyme (GME) superfamily contains many drug targets, including metabolic enzymes from pathogenic microorganisms as well as key regulatory proteins from higher eukaryotes. These enzymes, despite their diverse sequences, adopt the common alp propeller fold and catalyze the modification of (methylated) guanidino groups. Our structural superposition and structure-based alignment for the GMEs have identified key residues that are involved in the catalysis and substrate binding. We have shown that conserved guanidino-carboxyl interactions are utilized in two different ways; the acidic residues in the catalytic site form hydrogen bonds to the substrate guanidino group, and the enzyme Arg residues at several key positions recognize the carboxyl group of the substrate and fix its orientation. Based on this observation, we have proposed rules for classifying the GME sequences and predicting their molecular function from the conservation of the key acidic and Arg residues. Other novel motifs have been identified, which involve residues that are not in direct contact with the substrate but are likely to stabilize the active-site conformation through hydrogen-bonding networks. In addition, we have examined the domain architecture of the GMEs. Although most members consist of a single catalytic domain, fold recognition analysis has identified a likely bifunctional enzyme from a cyanobacterium. It has also revealed common immunoglobulin-like beta-sandwich domains found in the enzymes that recognize protein substrates. These findings will be useful for predicting the precise mechanism of action for potential novel targets and designing therapeutic compound's against them.
引用
收藏
页码:1010 / 1023
页数:14
相关论文
共 38 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [3] Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkw1099, 10.1093/nar/gkh131]
  • [4] Structural basis for Ca2+-induced activation of human PAD4
    Arita, K
    Hashimoto, H
    Shimizu, T
    Nakashima, K
    Yamada, M
    Sato, M
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (08) : 777 - 783
  • [5] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
  • [6] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [7] Recent changes to RasMol, recombining the variants
    Bernstein, HJ
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (09) : 453 - 455
  • [8] Histone deimination antagonizes arginine methylation
    Cuthbert, GL
    Daujat, S
    Snowden, AW
    Erdjument-Bromage, H
    Hagiwara, T
    Yamada, M
    Schneider, R
    Gregory, PD
    Tempst, P
    Bannister, AJ
    Kouzarides, T
    [J]. CELL, 2004, 118 (05) : 545 - 553
  • [9] Crystal structures of arginine deiminase with covalent reaction intermediates: Implications for catalytic mechanism
    Das, K
    Butler, GH
    Kwiatkowski, V
    Clark, AD
    Yadav, P
    Arnold, E
    [J]. STRUCTURE, 2004, 12 (04) : 657 - 667
  • [10] Structural insight into arginine degradation by arginine deiminase, an antibacterial and parasite drug target
    Galkin, A
    Kulakova, L
    Sarikaya, E
    Lim, K
    Howard, A
    Herzberg, O
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (14) : 14001 - 14008