Implications for using biogas as a fuel source for solid oxide fuel cells: internal dry reforming in a small tubular solid oxide fuel cell

被引:48
|
作者
Staniforth, J [1 ]
Ormerod, RM [1 ]
机构
[1] Univ Keele, Sch Chem & Phys, Birchall Ctr Inorgan Chem & Mat Sci, Keele ST5 5BG, Staffs, England
基金
英国工程与自然科学研究理事会;
关键词
solid oxide fuel cells; biogas; dry reforming; methane; nickel; yttria-stabilized zirconia; coke formation;
D O I
10.1023/A:1016000519280
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The feasibility of operating a solid oxide fuel cell (SOFC) on biogas has been studied over a wide compositional range of biogas, using a small tubular solid oxide fuel cell system operating at 850 degreesC. It is possible to run the SOFC on biogas, even at remarkably low levels of methane, at which conventional heat engines would not work. The power output varies with methane content, with maximum power production occurring at 45% methane, corresponding to maximal production of H-2 and CO through internal dry reforming. Direct electrocatalytic oxidation of methane does not contribute to the power output of the cell. At higher methane contents methane decomposition becomes significant, leading to increased H-2 production, and hence transiently higher power production, and deleterious carbon deposition and thus eventual cell deactivation.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [41] Fuel Composition Influences on Exergetic Performance of a Standalone Internal Reforming Solid Oxide Fuel Cell
    Wahid, Mazlan Aabdul
    Barzegaravval, Hasan
    Ghazali, Ahmad Dairobi
    Kasani, Adam
    Mazlan, Mohammad Amri
    Saat, Aminuddin
    Yasin, Mohd
    10TH INTERNATIONAL MEETING OF ADVANCES IN THERMOFLUIDS (IMAT 2018): SMART CITY: ADVANCES IN THERMOFLUID TECHNOLOGY IN TROPICAL URBAN DEVELOPMENT, 2019, 2062
  • [42] Biodiesel formulations as fuel for internally reforming solid oxide fuel cell
    Nahar, G.
    Kendall, K.
    FUEL PROCESSING TECHNOLOGY, 2011, 92 (07) : 1345 - 1354
  • [43] Feasibility study on supercritical fuel cooled solid oxide fuel cell stack with internal reforming
    Li, Chengjie
    Cheng, Kunlin
    Li, Bo
    Liu, He
    Qin, Jiang
    Wei, Liqiu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 312 - 322
  • [44] Feasibility of palm-biodiesel fuel for a direct internal reforming solid oxide fuel cell
    Tran Quang-Tuyen
    Shiratori, Yusuke
    Sasaki, Kazunari
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (06) : 609 - 616
  • [45] On the effect of methane internal reforming modelling in solid oxide fuel cells
    Sanchez, D.
    Chacartegui, R.
    Munoz, A.
    Sanchez, T.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (07) : 1834 - 1844
  • [46] Performance simulation of direct internal reforming solid oxide fuel cells
    Zhao, Xi-Ling
    Zhang, Xing-Mei
    Duan, Chang-Gui
    Zou, Ping-Hua
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2009, 41 (02): : 97 - 100
  • [47] Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane
    Kim, Young Jin
    Lim, Hyung-Tae
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2015, 52 (05) : 325 - 330
  • [48] Modelling of solid oxide fuel cells with internal glycerol steam reforming
    Wang, Chen
    He, Qijiao
    Li, Zheng
    Xu, Qidong
    Han, Minfang
    Ni, Meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (33) : 15012 - 15023
  • [49] A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells
    Liu, Renzhu
    Zhao, Chunhua
    Li, Junliang
    Zeng, Fanrong
    Wang, Shaorong
    Wen, Tinglian
    Wen, Zhaoyin
    JOURNAL OF POWER SOURCES, 2010, 195 (02) : 480 - 482
  • [50] Direct internal methane reforming in biogas fuelled solid oxide fuel cell; the influence of operating parameters
    Saadabadi, S. Ali
    Illathukandy, Biju
    Aravind, Purushothaman Vellayani
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (08) : 1232 - 1248