Taylor's modularity conjecture holds for linear idempotent varieties

被引:5
作者
Bentz, Wolfram [1 ]
Sequeira, Luis [1 ,2 ]
机构
[1] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, Dept Matemat, P-1749016 Lisbon, Portugal
关键词
interpretability lattice; congruence modularity; derivative; linear variety; SEPARATION;
D O I
10.1007/s00012-014-0273-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The "Modularity Conjecture" is the assertion that the join of two nonmodular varieties in the lattice of interpretability types is nonmodular. We establish the veracity of this conjecture for the case of linear idempotent varieties. We also establish analogous results concerning n-permutability for some n, and the satisfaction of nontrivial congruence identities.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 12 条
[1]   A characterization of T3 separation for a special class of varieties [J].
Bentz, Wolfram .
ALGEBRA UNIVERSALIS, 2007, 56 (3-4) :399-410
[2]   A characterization of Hausdorff separation for a special class of varieties [J].
Bentz, Wolfram .
ALGEBRA UNIVERSALIS, 2006, 55 (2-3) :259-276
[3]  
Dent A., 2012, ALGEBR UNIV, V67, P375
[4]  
Freese R., ALGEBRA UNI IN PRESS
[5]  
Garcia O., 1984, MEM AM MATH SOC, V50
[6]  
KELLY D, 1973, NOT AM MATH SOC, V20, pA54
[7]  
Neumann W. D., 1974, J AUSTRAL MATH SOC, V17, P376
[8]   Near-unanimity is decomposable [J].
Sequeira, L .
ALGEBRA UNIVERSALIS, 2003, 50 (02) :157-164
[9]  
Sequeira L., 2001, THESIS U LISBOA
[10]   On the congruence modularity conjecture [J].
Sequeira, Luis .
ALGEBRA UNIVERSALIS, 2006, 55 (04) :495-508