Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors

被引:22
|
作者
Penza, M. [1 ]
Tagliente, M. A. [1 ]
Aversa, P. [1 ]
Cassano, G. [1 ]
Capodieci, L. [1 ]
机构
[1] ENEA, Mat & New Technol Unit, I-72100 Brindisi, Italy
来源
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS | 2006年 / 26卷 / 5-7期
关键词
carbon nanotubes; nanocomposite; SAW vapor sensors; microacoustic sensors;
D O I
10.1016/j.msec.2005.09.059
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langinuir-Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:1165 / 1170
页数:6
相关论文
共 50 条
  • [11] Low Cost Infrared Sensors Using Processed Single-Walled Carbon Nanotubes
    Omari, Mones
    2015 IEEE 12TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2015,
  • [12] CONNECTION OF SINGLE-WALLED CARBON NANOTUBES BY BANDAGING WITH A BIGGER RADIUS SINGLE-WALLED CARBON NANOTUBE
    Song, Hai-Yang
    Hu, Ming-Liang
    Zha, Xin-Wei
    MODERN PHYSICS LETTERS B, 2009, 23 (07): : 1005 - 1012
  • [13] Magnetoresistance Behavior of Cryogenic Temperature Sensors Based on Single-Walled Carbon Nanotubes
    Ionete, Eusebiu Ilarian
    Niculescu, Alina Elena
    Spiridon, Stefan Ionut
    Monea, Bogdan Florian
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 2767 - 2774
  • [14] Electrochemical Sensing Platform Based on Single-Walled Carbon Nanotubes (SWCNTs)/Gold Nanoparticles (AuNps) Nanocomposite
    Antonella Curulli
    Chiara Bianchini
    Daniela Zane
    Electrocatalysis, 2012, 3 : 30 - 38
  • [15] Electrochemical Sensing Platform Based on Single-Walled Carbon Nanotubes (SWCNTs)/Gold Nanoparticles (AuNps) Nanocomposite
    Curulli, Antonella
    Bianchini, Chiara
    Zane, Daniela
    ELECTROCATALYSIS, 2012, 3 (01) : 30 - 38
  • [16] Band theory of single-walled carbon nanotubes
    Zang, M
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (04) : 452 - 459
  • [17] Excitons in semiconducting single-walled carbon nanotubes
    Zhao, HB
    Mazumdar, S
    SYNTHETIC METALS, 2005, 155 (02) : 250 - 253
  • [18] Piezoresistive effect in single-walled carbon nanotubes
    Lyapkosova, O. S.
    Lebedev, N. G.
    PHYSICS OF THE SOLID STATE, 2012, 54 (07) : 1501 - 1506
  • [19] Magneto spectroscopy of single-walled carbon nanotubes
    Portugall, O.
    Krstic, V.
    Rikken, G. L. J. A.
    Kono, J.
    Shaver, J.
    Zaric, S.
    Moore, V. C.
    Hauge, R. H.
    Smalley, R. E.
    Miyauchi, Y.
    Maruyama, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1189 - 1197
  • [20] Thermal conductivity of single-walled carbon nanotubes
    Savin, Alexander V.
    Hu, Bambi
    Kivshar, Yuri S.
    PHYSICAL REVIEW B, 2009, 80 (19)