Machine learning classification of resting state functional connectivity predicts smoking status

被引:51
作者
Pariyadath, Vani [1 ]
Stein, Elliot A. [1 ]
Ross, Thomas J. [1 ]
机构
[1] NIDA, Neuroimaging Res Branch, Intramural Res Program, NIH, Baltimore, MD 21224 USA
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2014年 / 8卷
关键词
biomarkers; fMRI; machine learning; nicotine addiction; support vector machines; DRUG-ADDICTION; BRAIN NETWORKS; NICOTINE; DISEASE; FMRI; IMPULSIVITY; DYSFUNCTION; ACTIVATION; ABSTINENCE; CINGULATE;
D O I
10.3389/fnhum.2014.00425
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Machine learning-based approaches are now able to examine functional magnetic resonance imaging data in a multivariate manner and extract features predictive of group membership. We applied support vector machine (SVM)-based classification to resting state functional connectivity (rsFC) data from nicotine-dependent smokers and healthy controls to identify brain-based features predictive of nicotine dependence. By employing a network-centered approach, we observed that within-network functional connectivity measures offered maximal information for predicting smoking status, as opposed to between-network connectivity, or the representativeness of each individual node with respect to its parent network. Further, our analysis suggests that connectivity measures within the executive control and frontoparietal networks are particularly informative in predicting smoking status. Our findings suggest that machine learning-based approaches to classifying rsFC data offer a valuable alternative technique to understanding large-scale differences in addiction-related neurobiology.
引用
收藏
页数:10
相关论文
共 52 条
  • [11] Disease State Prediction From Resting State Functional Connectivity
    Craddock, R. Cameron
    Holtzheimer, Paul E., III
    Hu, Xiaoping P.
    Mayberg, Helen S.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) : 1619 - 1628
  • [12] Consistent resting-state networks across healthy subjects
    Damoiseaux, J. S.
    Rombouts, S. A. R. B.
    Barkhof, F.
    Scheltens, P.
    Stam, C. J.
    Smith, S. M.
    Beckmann, C. F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (37) : 13848 - 13853
  • [13] Impulsivity as a determinant and consequence of drug use: a review of underlying processes
    de Wit, Harriet
    [J]. ADDICTION BIOLOGY, 2009, 14 (01) : 22 - 31
  • [14] A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia
    Demirci, Oguz
    Clark, Vincent P.
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2008, 39 (04) : 1774 - 1782
  • [15] Prediction of Individual Brain Maturity Using fMRI
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Cohen, Alexander L.
    Fair, Damien A.
    Power, Jonathan D.
    Church, Jessica A.
    Nelson, Steven M.
    Wig, Gagan S.
    Vogel, Alecia C.
    Lessov-Schlaggar, Christina N.
    Barnes, Kelly Anne
    Dubis, Joseph W.
    Feczko, Eric
    Coalson, Rebecca S.
    Pruett, John R., Jr.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    [J]. SCIENCE, 2010, 329 (5997) : 1358 - 1361
  • [16] Abnormal Brain Structure Implicated in Stimulant Drug Addiction
    Ersche, Karen D.
    Jones, P. Simon
    Williams, Guy B.
    Turton, Abigail J.
    Robbins, Trevor W.
    Bullmore, Edward T.
    [J]. SCIENCE, 2012, 335 (6068) : 601 - 604
  • [17] Drug Addiction Endophenotypes: Impulsive Versus Sensation-Seeking Personality Traits
    Ersche, Karen D.
    Turton, Abigail J.
    Pradhan, Shachi
    Bullmore, Edward T.
    Robbins, Trevor W.
    [J]. BIOLOGICAL PSYCHIATRY, 2010, 68 (08) : 770 - 773
  • [18] The Fagerstrom Test for Nicotine Dependence as a Predictor of Smoking Abstinence: A Pooled Analysis of Varenicline Clinical Trial Data
    Fagerstrom, Karl
    Russ, Cristina
    Yu, Ching-Ray
    Yunis, Carla
    Foulds, Jonathan
    [J]. NICOTINE & TOBACCO RESEARCH, 2012, 14 (12) : 1467 - 1473
  • [19] Ford J, 2003, LECT NOTES COMPUT SC, V2879, P58
  • [20] The human brain is intrinsically organized into dynamic, anticorrelated functional networks
    Fox, MD
    Snyder, AZ
    Vincent, JL
    Corbetta, M
    Van Essen, DC
    Raichle, ME
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) : 9673 - 9678