Module amenability for semigroup algebras

被引:75
作者
Amini, M
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[2] Tarbiat Modarres Univ, Dept Math, Tehran, Iran
关键词
amenability; module amenability; semigroup algebras;
D O I
10.1007/s00233-004-0107-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the concept of amenability of a Banach algebra A to the case that there is an extra U-module structure on A, and show that when S is an inverse semigroup with subsemigroup E of idempotents, then A = l(1)(S) as a Banach module over U = l(1)(E) is module amenable if and only if S is amenable. When S is a discrete group, l(1) (E) = C and this is just the Johnson's theorem.
引用
收藏
页码:243 / 254
页数:12
相关论文
共 11 条
[1]  
Doran R. S., 1979, Lecture Notes in Math., V768
[2]   AMENABILITY OF INVERSE SEMIGROUPS AND THEIR SEMIGROUP ALGEBRAS [J].
DUNCAN, J ;
NAMIOKA, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1978, 80 :309-321
[3]  
JOHNSON BE, 1972, MEMOIRS AM MATH SOC, V127
[4]  
Lykova Z. A., 1992, J OPERAT THEOR, V28, P147
[5]  
LYKOVA ZA, 1993, RUSS MATH SURV+, V48, P175
[6]  
Lykova ZA, 1999, J OPERAT THEOR, V41, P23
[7]  
Munn WD., 1961, Proc. Glasgow Math. Assoc, V5, P41, DOI [10.1017/S2040618500034286, DOI 10.1017/S2040618500034286]
[8]  
Paterson A. L. T., 1999, Groupoids, Inverse Semigroups, and their Operator Algebras
[9]  
PHILLIPS J, 1983, J LOND MATH SOC, V28, P365
[10]  
Pier J. -P., 1988, Pitman Res. Notes Math. Ser., V172