Sparse Signal Approximation via Nonseparable Regularization

被引:82
作者
Selesnick, Ivan [1 ]
Farshchian, Masoud [2 ]
机构
[1] NYU, Tandon Sch Engn, Dept Elect & Comp Engn, 550 1St Ave, New York, NY 10003 USA
[2] Empyreal Waves LLC, Fairfax Stn, VA 22039 USA
基金
美国国家科学基金会;
关键词
Sparse signal model; sparse approximation; denoising; convex function; optimization; NONCONCAVE PENALIZED LIKELIHOOD; THRESHOLDING ALGORITHM; NONCONVEX PENALTIES; VARIABLE SELECTION; INVERSE PROBLEMS; RECOVERY; RECONSTRUCTION; CONVERGENCE; SHRINKAGE; REPRESENTATIONS;
D O I
10.1109/TSP.2017.2669904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The calculation of a sparse approximate solution to a linear system of equations is often performed using either L1-norm regularization and convex optimization or nonconvex regularization and nonconvex optimization. Combining these principles, this paper describes a type of nonconvex regularization that maintains the convexity of the objective function, thereby allowing the calculation of a sparse approximate solution via convex optimization. The preservation of convexity is viable in the proposed approach because it uses a regularizer that is nonseparable. The proposed method is motivated and demonstrated by the calculation of sparse signal approximation using tight frames. Examples of denoising demonstrate improvement relative to L1 norm regularization.
引用
收藏
页码:2561 / 2575
页数:15
相关论文
共 90 条
[81]   Sparse Bayesian learning and the relevance vector machine [J].
Tipping, ME .
JOURNAL OF MACHINE LEARNING RESEARCH, 2001, 1 (03) :211-244
[82]  
Voronin S, 2013, INT CONF ACOUST SPEE, P1636, DOI 10.1109/ICASSP.2013.6637929
[83]   A new iterative firm-thresholding algorithm for inverse problems with sparsity constraints [J].
Voronin, Sergey ;
Woerdeman, Hugo J. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) :151-164
[84]   Error control and concealment for video communication: A review [J].
Wang, Y ;
Zhu, QF .
PROCEEDINGS OF THE IEEE, 1998, 86 (05) :974-997
[85]   Sparse Signal Reconstruction via Iterative Support Detection [J].
Wang, Yilun ;
Yin, Wotao .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :462-491
[86]   Latent Variable Bayesian Models for Promoting Sparsity [J].
Wipf, David P. ;
Rao, Bhaskar D. ;
Nagarajan, Srikantan .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) :6236-6255
[87]   Compressed sensing recovery via nonconvex shrinkage penalties [J].
Woodworth, Joseph ;
Chartrand, Rick .
INVERSE PROBLEMS, 2016, 32 (07)
[88]   MINIMIZATION OF l1-2 FOR COMPRESSED SENSING [J].
Yin, Penghang ;
Lou, Yifei ;
He, Qi ;
Xin, Jack .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) :A536-A563
[89]   NEARLY UNBIASED VARIABLE SELECTION UNDER MINIMAX CONCAVE PENALTY [J].
Zhang, Cun-Hui .
ANNALS OF STATISTICS, 2010, 38 (02) :894-942
[90]   One-step sparse estimates in nonconcave penalized likelihood models [J].
Zou, Hui ;
Li, Runze .
ANNALS OF STATISTICS, 2008, 36 (04) :1509-1533