A twisted duality for parabolic Kazhdan Lusztig R-polynomials

被引:2
作者
Brenti, Francesco [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
关键词
Coxeter group; Parabolic R-polynomial; Parabolic Kazhdan Lusztig; polynomial; GEOMETRIC ASPECTS; BRUHAT ORDERINGS; ALGEBRAS; FORMULA;
D O I
10.1016/j.jalgebra.2017.01.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a duality result for the parabolic Kazhdan-Lusztig R-polynomials of a finite Coxeter system. This duality is similar to, but different from, the one obtained in [9]. As a consequence of our duality we obtain an identity between the parabolic Kazhdan Lusztig and inverse Kazhdan Lusztig polynomials of a finite Coxeter system. We also obtain applications to certain modules defined by Deodhar and derive a result that gives evidence in favor of Marietti's combinatorial invariance conjecture for parabolic Kazhdan Lusztig polynomials. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:472 / 482
页数:11
相关论文
共 17 条