Optimization of electron beam-deposited silver nanoparticles on zinc oxide for maximally surface enhanced Raman spectroscopy

被引:5
作者
Cook, Andrew L. [1 ]
Haycook, Christopher P. [1 ]
Locke, Andrea K. [1 ]
Mu, Richard R. [2 ]
Giorgio, Todd D. [1 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Tennessee State Univ, TSU Interdisciplinary Grad Engn Res TIGER Inst, Nashville, TN 37209 USA
来源
NANOSCALE ADVANCES | 2021年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
SERS DETECTION; AG; SCATTERING; BACTERIA; FABRICATION; PLATFORM; WATER; ARRAYS; BLOOD; IMAGE;
D O I
10.1039/d0na00563k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface enhanced Raman spectroscopy enables robust, rapid analysis on highly dilute samples. To be useful, the technique needs sensing substrates that will enhance intrinsically weak Raman signals of trace analytes. In particular, three-dimensional substrates such as zinc oxide nanowires decorated with electron-beam deposited silver nanoparticles are easily fabricated and serve the dual need of structural stability and detection sensitivity. However, little has been done to optimize electron beam-deposited silver nanoparticles for maximal surface enhancement in the unique dielectric environment of the zinc oxide substrate. Herein, fabrication and anneal parameters of electron beam-deposited silver nanoparticles were examined for the purpose of maximizing surface enhancement. Specifically, this work explored the effect of changing film thickness, deposition rate, anneal temperature, and anneal time on the surface plasmon resonance of Ag nanoparticles. In this study, multiple sets of fabrication and annealing parameters were discovered that optimized surface plasmon resonance for maximal enhancement to Raman signals acquired with a 532 nm laser. This work represents the first characterization of the fabrication and annealing parameters for electron beam-deposited silver nanoparticles on zinc oxide.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 60 条
[41]   Rapid detection of mercury contamination in water by surface enhanced Raman spectroscopy [J].
Sarfo, Daniel K. ;
Sivanesan, Arumugam ;
Izake, Emad L. ;
Ayoko, Godwin A. .
RSC ADVANCES, 2017, 7 (35) :21567-21575
[42]   Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation [J].
Sato, H ;
Chiba, H ;
Tashiro, H ;
Ozaki, Y .
JOURNAL OF BIOMEDICAL OPTICS, 2001, 6 (03) :366-370
[43]  
Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019]
[44]   NIH Image to ImageJ: 25 years of image analysis [J].
Schneider, Caroline A. ;
Rasband, Wayne S. ;
Eliceiri, Kevin W. .
NATURE METHODS, 2012, 9 (07) :671-675
[45]   Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor [J].
Sinha, Tridib Kumar ;
Ghosh, Sujoy Kumar ;
Maiti, Rishi ;
Jana, Santanu ;
Adhikari, Basudam ;
Mandal, Dipankar ;
Ray, Samit K. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (24) :14986-14993
[46]   Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood [J].
Sivanesan, Arumugam ;
Witkowska, Evelin ;
Adamkiewicz, Witold ;
Dziewit, Lukasz ;
Kaminska, Agnieszka ;
Waluk, Jacek .
ANALYST, 2014, 139 (05) :1037-1043
[47]  
Szymborski T, 2014, ANALYST, V139, P5061, DOI [10.1039/c4an01137f, 10.1039/C4AN01137F]
[48]   Optical properties of Ag nanoparticle layers deposited on silicon substrates [J].
Thouti, Eshwar ;
Chander, Nikhil ;
Dutta, Viresh ;
Komarala, Vamsi K. .
JOURNAL OF OPTICS, 2013, 15 (03)
[49]   Surface-enhanced Raman spectroscopy using metallic nanostructures [J].
Vo-Dinh, T .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1998, 17 (8-9) :557-582
[50]   A three-dimensional surface-enhanced Raman scattering substrate: Au nanoparticle supramolecular self-assembly in anodic aluminum oxide template [J].
Wang, Xinnan ;
Xu, Shuping ;
Li, Haibo ;
Tao, Jinlong ;
Zhao, Bing ;
Xu, Weiqing .
JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (03) :459-463