Optimization of electron beam-deposited silver nanoparticles on zinc oxide for maximally surface enhanced Raman spectroscopy

被引:5
作者
Cook, Andrew L. [1 ]
Haycook, Christopher P. [1 ]
Locke, Andrea K. [1 ]
Mu, Richard R. [2 ]
Giorgio, Todd D. [1 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Tennessee State Univ, TSU Interdisciplinary Grad Engn Res TIGER Inst, Nashville, TN 37209 USA
来源
NANOSCALE ADVANCES | 2021年 / 3卷 / 02期
基金
美国国家科学基金会;
关键词
SERS DETECTION; AG; SCATTERING; BACTERIA; FABRICATION; PLATFORM; WATER; ARRAYS; BLOOD; IMAGE;
D O I
10.1039/d0na00563k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface enhanced Raman spectroscopy enables robust, rapid analysis on highly dilute samples. To be useful, the technique needs sensing substrates that will enhance intrinsically weak Raman signals of trace analytes. In particular, three-dimensional substrates such as zinc oxide nanowires decorated with electron-beam deposited silver nanoparticles are easily fabricated and serve the dual need of structural stability and detection sensitivity. However, little has been done to optimize electron beam-deposited silver nanoparticles for maximal surface enhancement in the unique dielectric environment of the zinc oxide substrate. Herein, fabrication and anneal parameters of electron beam-deposited silver nanoparticles were examined for the purpose of maximizing surface enhancement. Specifically, this work explored the effect of changing film thickness, deposition rate, anneal temperature, and anneal time on the surface plasmon resonance of Ag nanoparticles. In this study, multiple sets of fabrication and annealing parameters were discovered that optimized surface plasmon resonance for maximal enhancement to Raman signals acquired with a 532 nm laser. This work represents the first characterization of the fabrication and annealing parameters for electron beam-deposited silver nanoparticles on zinc oxide.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 60 条
[31]   Review of SERS Substrates for Chemical Sensing [J].
Mosier-Boss, Pamela A. .
NANOMATERIALS, 2017, 7 (06)
[32]   Scaling Rules of SERS Intensity [J].
Nishijima, Yoshiaki ;
Hashimoto, Yoshikazu ;
Rosa, Lorenzo ;
Khurgin, Jacob B. ;
Juodkazis, Saulius .
ADVANCED OPTICAL MATERIALS, 2014, 2 (04) :382-388
[33]   Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment [J].
Ong, Timothy T. X. ;
Blanch, Ewan W. ;
Jones, Oliver A. H. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 720
[34]   SERS-active substrates based on n-type porous silicon [J].
Panarin, A. Yu. ;
Terekhov, S. N. ;
Kholostov, K. I. ;
Bondarenko, V. P. .
APPLIED SURFACE SCIENCE, 2010, 256 (23) :6969-6976
[35]   INDEX OF REFRACTION ZNO [J].
PARK, YS ;
SCHNEIDER, JR .
JOURNAL OF APPLIED PHYSICS, 1968, 39 (07) :3049-+
[36]   1064 nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence [J].
Patil, Chetan A. ;
Pence, Isaac J. ;
Lieber, Chad A. ;
Mahadevan-Jansen, Anita .
OPTICS LETTERS, 2014, 39 (02) :303-306
[37]   Characterization of the ag mediated surface-enhanced Raman spectroscopy of saxitoxin [J].
Pearman, William F. ;
Angel, S. Michael ;
Ferry, John L. ;
Hall, Sherwood .
APPLIED SPECTROSCOPY, 2008, 62 (07) :727-732
[38]   A Review on Surface-Enhanced Raman Scattering [J].
Pilot, Roberto ;
Signorini, Raffaella ;
Durante, Christian ;
Orian, Laura ;
Bhamidipati, Manjari ;
Fabris, Laura .
BIOSENSORS-BASEL, 2019, 9 (02)
[39]   The effect of deposition time on the structural properties of silver nanoparticles deposited on anodic alumina templates [J].
Rezaee, Sahar .
RESULTS IN PHYSICS, 2018, 9 :1521-1524
[40]   Multiplexed Plasmon Sensor for Rapid Label-Free Analyte Detection [J].
Rosman, Christina ;
Prasad, Janak ;
Neiser, Andreas ;
Henkel, Andreas ;
Edgar, Jonathan ;
Soennichsen, Carsten .
NANO LETTERS, 2013, 13 (07) :3243-3247