Electrochemical detection of DNA damage induced by clenbuterol at a reduced graphene oxide-Nafion modified glassy carbon electrode

被引:20
|
作者
Lin, Xiaoyun [1 ]
Ni, Yongnian [1 ,2 ]
Pei, Xueying [1 ]
Kokot, Serge [3 ]
机构
[1] Nanchang Univ, Sch Chem, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, State Key Lab Food Sci & Technol, Nanchang 330047, Jiangxi, Peoples R China
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
QUANTITATIVE MEASUREMENT; METHYLENE-BLUE; IN-SITU; SENSOR; NANOPARTICLES; REDUCTION; TOXICITY; CATALYST; ACID; FILM;
D O I
10.1039/c6ay03022j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
An electrochemical biosensor capable of direct detection of DNA damage induced by clenbuterol (CLB) has been developed. A glassy carbon electrode (GCE) was modified using reduced graphene oxide-Nafion and dsDNA to produce a dsDNA/RGO-Nafion/GCE sensor. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and the results at each stage of the electrode construction were interpreted. They indicated that the electrochemical oxidation peak currents of guanine and adenine at the electrode (dsDNA/RGO-Nafion/GCE) significantly increased as compared with those at the untreated electrode (dsDNA/GCE). Based on this, the sensor was used to measure the change of the oxidation peak currents for guanine and adenine between the intact and damaged dsDNA in the sensor films, and the DNA damage was successfully detected. Furthermore, the plot of peak current decline for the guanine and adenine versus the concentration of CLB was linear in the range of 5.0 x 10(-7) to 4.0 x 10(-6) mol L-1, with a limit of detection (LOD) of 3.2 x 10(-7) mol L-1, which provided a good method to determine CLB indirectly.
引用
收藏
页码:1105 / 1111
页数:7
相关论文
共 50 条
  • [21] Electrochemical Behavior and Voltammetric Determination of Theophylline at a Glassy Carbon Electrode Modified with Graphene/Nafion
    Li, Yamin
    Wu, Shufang
    Luo, Peili
    Liu, Jie
    Song, Ge
    Zhang, Kai
    Ye, Baoxian
    ANALYTICAL SCIENCES, 2012, 28 (05) : 497 - 502
  • [22] A cobalt oxide nanocubes interleaved reduced graphene oxide nanocomposite modified glassy carbon electrode for amperometric detection of serotonin
    Shahid, Muhammad Mehmood
    Rameshkumar, Perumal
    Numan, Arshid
    Shahabuddin, Syed
    Alizadeh, Mandi
    Khiew, Poi Sim
    Chiu, Wee Siong
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 100 : 388 - 395
  • [23] Electrochemical studies of NADH oxidation on chemically reduced graphene oxide nanosheets modified glassy carbon electrode
    Immanuel, Susan
    Sivasubramanian, R.
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 249
  • [24] Electrochemical Behavior and Voltammetric Determination of Curcumin at Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode
    Zhang, Dongdong
    Ouyang, Xiaoyan
    Ma, Jing
    Li, Lingzhi
    Zhang, Yanmin
    ELECTROANALYSIS, 2016, 28 (04) : 749 - 756
  • [25] Voltammetric Determination of Gallic Acid with a Glassy Carbon Electrode modified with Reduced Graphene Oxide
    Lisnund, Sireerat
    Blay, Vincent
    Chansaenpak, Kantapat
    Pinyou, Piyanut
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (08): : 7214 - 7227
  • [26] Electrochemical detection of ciprofloxacin based on graphene modified glassy carbon electrode
    Xie, A. -J.
    Chen, Y.
    Luo, S. -P.
    Tao, Y. -W.
    Jin, Y. -S.
    Li, W. -W.
    MATERIALS TECHNOLOGY, 2015, 30 (06) : 362 - 367
  • [27] Electrochemical Detection of Sudan I at Nafion® and Thiolated Multi Walled Carbon Nanotube Modified Glassy Carbon Electrode
    You, Jung-Min
    Naranchimeg, Orogzodmaa
    Lee, Hyo Kyoung
    Jeon, Seungwon
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (05) : 552 - 557
  • [28] An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection
    Fu, Li
    Zheng, Yuhong
    Wang, Aiwu
    Cai, Wen
    Deng, Bo
    Zhang, Zhi
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (01) : 135 - 141
  • [29] Highly sensitive electrochemical detection of iodate based on glassy carbon electrode modified with iridium oxide
    Lazarova, Yanna
    Shterev, Ivan
    Dodevska, Totka
    MONATSHEFTE FUR CHEMIE, 2018, 149 (11): : 1955 - 1962
  • [30] Highly selective electrochemical detection of ciprofloxacin using reduced graphene oxide/poly(phenol red) modified glassy carbon electrode
    Chauhan, Ruchika
    Gill, Atal A. S.
    Nate, Zondi
    Karpoormath, Rajshekhar
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 871