Graphene aerogel-supported ruthenium nanoparticles for COx-free hydrogen production from ammonia

被引:44
作者
Kocer, Tolga [1 ,2 ]
Oztuna, F. Eylul Sarac [3 ]
Kurtoglu, Samira Fatma [1 ,2 ]
Unal, Ugur [2 ,3 ,4 ]
Uzun, Alper [1 ,2 ,4 ]
机构
[1] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkey
[2] Koc Univ, TUPRAS Energy Ctr KUTEM, TR-34450 Istanbul, Turkey
[3] Koc Univ, Dept Chem, TR-34450 Istanbul, Turkey
[4] Koc Univ, Surface Sci & Technol Ctr KUYTAM, TR-34450 Istanbul, Turkey
关键词
COx-free hydrogen production; Ammonia decomposition; Graphene aerogel; Supported ruthenium nanoparticles; Promoter; NH3; DECOMPOSITION; H-2; PRODUCTION; RU NANOPARTICLES; OXYGEN REDUCTION; IN-SITU; CATALYSTS; GENERATION; OXIDE; PROMOTER; NI;
D O I
10.1016/j.apcata.2020.117969
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ruthenium was highly dispersed on graphene aerogel (GA) at high loadings to achieve high performance in COx-free hydrogen production from ammonia. Catalytic performance measurements on ammonia decomposition showed that the GA-supported catalyst with a Ru loading of 13.6 wt% provides an ammonia conversion of 71.5 % at a space-velocity of 30,000 ml NH3 g(cat)(-1)h(-1) and at 450 degrees C, corresponding to a hydrogen production rate of 21.9 mmol H-2 g(cat)(-1)min(-1). The addition of K increased the ammonia conversion to a record high value of 97.6 % under identical conditions, reaching a hydrogen generation rate of 30.0 mmol H-2 g(cat)(-1) min(-1), demonstrated to be stable for at least 80 h. A comparison of the turnover frequencies of catalysts indicated that this increase in performance upon the addition of K originated from an increase in the number of the active Ru sites and the corresponding electron density available for reaction.
引用
收藏
页数:9
相关论文
共 72 条
[1]   Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt % [J].
Babucci, Melike ;
Oztuna, F. Eylul Sarac ;
Debefve, Louise M. ;
Boubnov, Alexey ;
Bare, Simon R. ;
Gates, Bruce C. ;
Unal, Ugur ;
Uzun, Alper .
ACS CATALYSIS, 2019, 9 (11) :9905-9913
[2]   Alkali hydroxide-modified Ru/γ-Al2O3 catalysts for ammonia decomposition [J].
Bajus, S. ;
Agel, F. ;
Kusche, M. ;
Bhriain, N. Ni ;
Wasserscheid, P. .
APPLIED CATALYSIS A-GENERAL, 2016, 510 :189-195
[3]   H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review [J].
Bell, T. E. ;
Torrente-Murciano, L. .
TOPICS IN CATALYSIS, 2016, 59 (15-16) :1438-1457
[4]   Modification of Ammonia Decomposition Activity of Ruthenium Nanoparticles by N-Doping of CNT Supports [J].
Bell, Tamsin E. ;
Zhan, Guowu ;
Wu, Kejun ;
Zeng, Hua Chun ;
Torrente-Murciano, Laura .
TOPICS IN CATALYSIS, 2017, 60 (15-16) :1251-1259
[5]   Self-Standing Reduced Graphene Oxide Papers Electrodeposited with Manganese Oxide Nanostructures as Electrodes for Electrochemical Capacitors [J].
Beyazay, Tugce ;
Oztuna, F. Eylul Sarac ;
Unal, Ugur .
ELECTROCHIMICA ACTA, 2019, 296 :916-924
[6]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[7]   Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition [J].
Duan Xuezhi ;
Zhou Jinghong ;
Qian Gang ;
Li Ping ;
Zhou Xinggui ;
Chen De .
CHINESE JOURNAL OF CATALYSIS, 2010, 31 (08) :979-986
[8]   Unraveling the oxidation of Ru using XPS [J].
Ernst, M. A. ;
Sloof, W. G. .
SURFACE AND INTERFACE ANALYSIS, 2008, 40 (3-4) :334-337
[9]   Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies [J].
Ganguly, Abhijit ;
Sharma, Surbhi ;
Papakonstantinou, Pagona ;
Hamilton, Jeremy .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (34) :17009-17019
[10]   Role of B5-Type Sites in Ru Catalysts used for the NH3 Decomposition Reaction [J].
Garcia-Garcia, F. R. ;
Guerrero-Ruiz, A. ;
Rodriguez-Ramos, I. .
TOPICS IN CATALYSIS, 2009, 52 (6-7) :758-764