Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana-Baleanu derivative

被引:39
作者
Inc, Mustafa [1 ]
Yusuf, Abdullahi [1 ,2 ]
Aliyu, Aliyu Isa [1 ,2 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[2] Fed Univ Dutse, Fac Sci, Dept Math, Jigawa 7156, Nigeria
[3] Cankaya Univ, Dept Math, TR-1406530 Ankara, Turkey
[4] Inst Space Sci, Bucharest, Romania
关键词
Fractional logarithmic-KdV equation; AB derivative; Fixed-point theorem; Existence and uniqueness; And numerical simulations; KLEIN-GORDON EQUATIONS; LIE SYMMETRY ANALYSIS; 1ST INTEGRAL METHOD; OPTICAL SOLITONS; CONSERVATION-LAWS; PERTURBATION; MODEL; DARK; EVOLUTION;
D O I
10.1016/j.physa.2018.04.092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work presents analysis of the logarithmic-KdV equation involving new fractional operator called Atangana-Baleanu (AB) fractional derivative with Mittag-Leffler (ML) type kernel. The existence and uniqueness of the governing equation having AB fractional derivative with ML type kernel is proved with the aid of a fixed-point theorem. We present numerical simulations by using iterative algorithm. The effectiveness of various parameters and variables on the displacement are presented in Figures 1 and 2. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:520 / 531
页数:12
相关论文
共 48 条
[31]   Group analysis of the time fractional generalized diffusion equation [J].
Lashkarian, Elham ;
Hejazi, S. Reza .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 479 :572-579
[32]   Analytical study of solitons to nonlinear time fractional parabolic equations [J].
Mirzazadeh, M. .
NONLINEAR DYNAMICS, 2016, 85 (04) :2569-2576
[33]   Solitons and periodic solutions to a couple of fractional nonlinear evolution equations [J].
Mirzazadeh, M. ;
Eslami, M. ;
Biswas, Anjan .
PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (03) :465-476
[34]  
Mirzazadeh M., 2016, J Comput Theor Nanosci, V13, P5361, DOI [10.1166/jctn.2016.5425, DOI 10.1166/JCTN.2016.5425]
[35]   Persistence of low levels of plasma viremia and of the latent reservoir in patients under ART: A fractional-order approach [J].
Pinto, Carla M. A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 :251-260
[36]   A new fractional model for giving up smoking dynamics [J].
Singh, Jagdev ;
Kumar, Devendra ;
Al Qurashi, Maysaa ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[37]   Analysis of an El Nino-Southern Oscillation model with a new fractional derivative [J].
Singh, Jagdev ;
Kumar, Devendra ;
Nieto, Juan J. .
CHAOS SOLITONS & FRACTALS, 2017, 99 :109-115
[38]   Analysis of a New Fractional Model for Damped Bergers' Equation [J].
Singh, Jagdev ;
Kumar, Devendra ;
Al Qurashi, Maysaa ;
Baleanu, Dumitru .
OPEN PHYSICS, 2017, 15 (01) :35-41
[39]  
Sonomezoglu A., 2016, EUR PHYS J PLUS, V131, P166, DOI DOI 10.1140/epjp/i2016-16166-7
[40]   Bright, dark and other optical solitons with second order spatiotemporal dispersion [J].
Tariq, Kalim U. ;
Younis, Muhammad .
OPTIK, 2017, 142 :446-450