Deep Supervision with Additional Labels for Retinal Vessel Segmentation Task

被引:121
作者
Zhang, Yishuo [1 ]
Chung, Albert C. S. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Lo Kwee Seong Med Image Anal Lab, Hong Kong, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II | 2018年 / 11071卷
关键词
BLOOD-VESSELS; IMAGES;
D O I
10.1007/978-3-030-00934-2_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automatic analysis of retinal fundus images is of vital importance in diagnosis tasks of retinopathy. Segmenting vessels accurately is a fundamental step in analysing retinal images. However, it is usually difficult due to various imaging conditions, low image contrast and the appearance of pathologies such as micro-aneurysms. In this paper, we propose a novel method with deep neural networks to solve this problem. We utilize U-net with residual connection to detect vessels. To achieve better accuracy, we introduce an edge-aware mechanism, in which we convert the original task into a multi-class task by adding additional labels on boundary areas. In this way, the network will pay more attention to the boundary areas of vessels and achieve a better performance, especially in tiny vessels detecting. Besides, side output layers are applied in order to give deep supervision and therefore help convergence. We train and evaluate our model on three databases: DRIVE, STARE, and CHASEDB1. Experimental results show that our method has a comparable performance with AUC of 97.99% on DRIVE and an efficient running time compared to the state-of-the-art methods.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 2017, ARXIV171206742
[2]   An approach to localize the retinal blood vessels using bit planes and centerline detection [J].
Fraz, M. M. ;
Barman, S. A. ;
Remagnino, P. ;
Hoppe, A. ;
Basit, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (02) :600-616
[3]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[4]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[5]   Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J].
Hoover, A ;
Kouznetsova, V ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (03) :203-210
[6]  
Jelinek HF, 2010, AUTOMATED IMAGE DETECTION OF RETINAL PATHOLOGY, P1
[7]  
Lee CY, 2015, JMLR WORKSH CONF PRO, V38, P562
[8]   Segmenting Retinal Blood Vessels With Deep Neural Networks [J].
Liskowski, Pawel ;
Krawiec, Krzysztof .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (11) :2369-2380
[9]   A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features [J].
Marin, Diego ;
Aquino, Arturo ;
Emilio Gegundez-Arias, Manuel ;
Manuel Bravo, Jose .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (01) :146-158
[10]   Multi-level deep supervised networks for retinal vessel segmentation [J].
Mo, Juan ;
Zhang, Lei .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (12) :2181-2193