A Comparative Assessment of Machine-Learning Techniques for Land Use and Land Cover Classification of the Brazilian Tropical Savanna Using ALOS-2/PALSAR-2 Polarimetric Images

被引:85
作者
Camargo, Flavio F. [1 ]
Sano, Edson E. [2 ]
Almeida, Claudia M. [3 ]
Mura, Jose C. [3 ]
Almeida, Tati [1 ]
机构
[1] Univ Brasilia, Inst Geosci, BR-70297400 Brasilia, DF, Brazil
[2] Embrapa Cerrados, BR-020 Km 18, BR-73310970 Planaltina, DF, Brazil
[3] Natl Inst Space Res, Av Astronautas 1758, BR-12227010 Sao Jose Dos Campos, SP, Brazil
关键词
SAR; polarimetry; data mining; thematic mapping; Cerrado; SURFACE-ROUGHNESS; AFRICAN SAVANNAS; SCATTERING MODEL; WEB SERVER; L-BAND; FOREST; RADARSAT-2; VEGETATION; REGION;
D O I
10.3390/rs11131600
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study proposes a workflow for land use and land cover (LULC) classification of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images of the Brazilian tropical savanna (Cerrado) biome. The following LULC classes were considered: forestlands; shrublands; grasslands; reforestations; croplands; pasturelands; bare soils/straws; urban areas; and water reservoirs. The proposed approach combines polarimetric attributes, image segmentation, and machine-learning procedures. A set of 125 attributes was generated using polarimetric ALOS-2/PALSAR-2 images, including the van Zyl, Freeman-Durden, Yamaguchi, and Cloude-Pottier target decomposition components, incoherent polarimetric parameters (biomass indices and polarization ratios), and HH-, HV-, VH-, and VV-polarized amplitude images. These attributes were classified using the Naive Bayes (NB), DT J48 (DT = decision tree), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) algorithms. The RF, MLP, and SVM classifiers presented the most accurate performances. NB and DT J48 classifiers showed a lower performance in relation to the RF, MLP, and SVM. The DT J48 classifier was the most suitable algorithm for discriminating urban areas and natural vegetation cover. The proposed workflow can be replicated for other SAR images with different acquisition modes or for other types of vegetation domains.
引用
收藏
页数:16
相关论文
共 71 条
[1]  
[Anonymous], 2017, REV BRAS CARTOGR, V69, P1041
[2]  
[Anonymous], 2008, CERRADO ECOLOGIA FLO
[3]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[4]   Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J].
Benz, UC ;
Hofmann, P ;
Willhauck, G ;
Lingenfelder, I ;
Heynen, M .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) :239-258
[5]   Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions [J].
Bergen, K. M. ;
Goetz, S. J. ;
Dubayah, R. O. ;
Henebry, G. M. ;
Hunsaker, C. T. ;
Imhoff, M. L. ;
Nelson, R. F. ;
Parker, G. G. ;
Radeloff, V. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114
[6]  
Bishop C.M., 1995, Neural networks for pattern recognition
[7]   Cerrado vegetation study using optical and radar remote sensing: two Brazilian case studies [J].
Bitencourt, Marisa D. ;
de Mesquita, Humberto N., Jr. ;
Kuntschik, Gerardo ;
da Rocha, Humberto R. ;
Furley, Peter A. .
CANADIAN JOURNAL OF REMOTE SENSING, 2007, 33 (06) :468-480
[8]  
Boerner W.M., 1998, MANUAL REMOTE SENSIN, V3rd, P271
[9]   An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR [J].
Bouvet, Alexandre ;
Mermoz, Stephane ;
Thuy Le Toan ;
Villard, Ludovic ;
Mathieu, Renaud ;
Naidoo, Laven ;
Asner, Gregory P. .
REMOTE SENSING OF ENVIRONMENT, 2018, 206 :156-173
[10]   A SAR-Based Index for Landscape Changes in African Savannas [J].
Braun, Andreas ;
Hochschild, Volker .
REMOTE SENSING, 2017, 9 (04)