Quartz tuning fork viscometers for helium liquids

被引:90
|
作者
Clubb, DO [1 ]
Buu, OVL [1 ]
Bowley, RM [1 ]
Nyman, R [1 ]
Owers-Bradley, JR [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England
关键词
tuning fork; helium liquids; viscometers;
D O I
10.1023/B:JOLT.0000035368.63197.16
中图分类号
O59 [应用物理学];
学科分类号
摘要
Mechanical resonators, in the form of vibrating wires or torsional oscillators, have long been employed as sensors in liquid He-3 and He-3 - He-4 mixtures. The damping of resonators is due to the viscosity of the surrounding liquid which is a strong, well-known function of temperature for bulk Fermi liquids. It is therefore possible to use the viscous damping for thermometry in the millikelvin regime. An alternative sensor is the small quartz tuning fork which is driven by the piezoelectric effect and requires no external magnetic field. In this paper, we present measurements of the viscous damping of such a tuning fork when immersed in a 6.2% He-3 - He-4 mixture, between 3 and 100 mK, and at zero and high (10 T) magnetic field. The measurements indicate that damping of the tuning fork resonance is dominated by the liquid helium properties and is insensitive to the applied magnetic field. The response of the tuning fork to the saturated helium mixture demonstrates that it could potentially be used for thermometry in any magnetic field. There is evidence of slip at the interface between the fork and the helium suggesting specular scattering from the smooth surface of the quartz. The fork is also able to detect the superfluid transition in pure liquid He-3.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Quartz Tuning Fork Viscometers for Helium Liquids
    D. O. Clubb
    O. V. L. Buu
    R. M. Bowley
    R. Nyman
    J. R. Owers-Bradley
    Journal of Low Temperature Physics, 2004, 136 : 1 - 13
  • [2] Quartz tuning fork in helium
    Pentti, E. M.
    Tuoriniemi, J. T.
    Salmela, A. J.
    Sebedash, A. P.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 150 (3-4) : 555 - 560
  • [3] Quartz Tuning Fork in Helium
    E. M. Pentti
    J. T. Tuoriniemi
    A. J. Salmela
    A. P. Sebedash
    Journal of Low Temperature Physics, 2008, 150 : 555 - 560
  • [4] Quartz Tuning Fork: Thermometer, Pressure- and Viscometer for Helium Liquids
    R. Blaauwgeers
    M. Blazkova
    M. Človečko
    V. B. Eltsov
    R. de Graaf
    J. Hosio
    M. Krusius
    D. Schmoranzer
    W. Schoepe
    L. Skrbek
    P. Skyba
    R. E. Solntsev
    D. E. Zmeev
    Journal of Low Temperature Physics, 2007, 146 : 537 - 562
  • [5] Quartz tuning fork: Thermometer, pressure- and viscometer for helium liquids
    Blaauwgeers, R.
    Blazkova, M.
    Clovecko, M.
    Eltsov, V. B.
    de Graaf, R.
    Hosio, J.
    Krusius, M.
    Schmoranzer, D.
    Schoepe, W.
    Skrbek, L.
    Skyba, P.
    Solntsev, R. E.
    Zmeev, D. E.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 146 (5-6) : 537 - 562
  • [6] Mutual friction force with oscillations of a quartz tuning fork in superfluid helium
    Mykhailenko, K.A.
    Sokolov, S.S.
    Sheshin, G.A.
    Fizika Nizkikh Temperatur, 2019, 45 (10): : 1235 - 1241
  • [7] Nonlinear phenomena in the vibrations of a quartz tuning fork immersed in superfluid helium
    Gritsenko, I. A.
    Dubchak, T. A.
    Mykhailenko, K. A.
    Sokolov, S. S.
    Sheshin, G. A.
    LOW TEMPERATURE PHYSICS, 2018, 44 (01) : 36 - 40
  • [8] Flow regimes of the superfluid helium caused by oscillating quartz tuning fork
    Chagovets, V.
    Gritsenko, I.
    Rudavskii, E.
    Sheshin, G.
    Zadorozhko, A.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 3: QUANTUM GASES LIQUIDS AND SOLIDS, 2009, 150
  • [9] Mutual friction force with quartz tuning fork oscillations in superfluid helium
    Mykhailenko, K. A.
    Sokolov, S. S.
    Sheshin, G. A.
    LOW TEMPERATURE PHYSICS, 2019, 45 (10) : 1053 - 1058
  • [10] Studies on Helium Liquids by Vibrating Wires and Quartz Tuning Forks
    Pentti, Elias
    Rysti, Juho
    Salmela, Anssi
    Sebedash, Alexander
    Tuoriniemi, Juha
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 165 (3-4) : 132 - 165