On the edge-Szeged index of unicyclic graphs with given diameter

被引:7
作者
Wang, Guangfu [1 ]
Li, Shuchao [2 ]
Qi, Dongchao [2 ]
Zhang, Huihui [3 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China
[3] Luoyang Normal Univ, Dept Math, Luoyang 471002, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Unicyclic graphs; Diameter; WIENER INDEX; TOPOLOGICAL INDEX; BIPARTITE GRAPHS; EXTREMAL CACTI; CONJECTURES; DISTANCE; RESPECT;
D O I
10.1016/j.amc.2018.04.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected graph G, the edge Szeged index Sz(e)(G) is defined as Sz(e)(G) = Sigma e-uv is an element of E m(u)(e)m(v)(e), where m(u)(e) and m(v)(e) are, respectively, the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u. In this paper, some extremal problems on the edge-Szeged index of unicyclic graphs are considered. All the n-vertex unicyclic graphs with a given diameter having the minimum edge-Szeged index are identified. Using a unified approach we identify the n-vertex unicyclic graphs with the minimum, second minimum, third minimum and fourth minimum edge-Szeged indices. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 106
页数:13
相关论文
共 47 条
[22]  
Iranmanesh A, 2008, UTILITAS MATHEMATICA, V77, P65
[23]  
Khodashenas H, 2011, KRAGUJEV J MATH, V35, P165
[24]   The Szeged and the Wiener index of graphs [J].
Klavzar, S ;
Rajapakse, A ;
Gutman, I .
APPLIED MATHEMATICS LETTERS, 1996, 9 (05) :45-49
[25]   Wiener index versus Szeged index in networks [J].
Klavzar, Sandi ;
Nadjafi-Arani, M. J. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) :1150-1153
[26]   Mathematical aspects of Wiener index [J].
Knor, Martin ;
Skrekovski, Riste ;
Tepeh, Aleksandra .
ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) :327-352
[27]  
Li JP, 2013, MATCH-COMMUN MATH CO, V70, P621
[28]   Proofs of three conjectures on the quotients of the (revised) Szeged index and the Wiener index and beyond [J].
Li, Shuchao ;
Zhang, Huihui .
DISCRETE MATHEMATICS, 2017, 340 (03) :311-324
[29]   On the sum of all distances in bipartite graphs [J].
Li, Shuchao ;
Song, Yibing .
DISCRETE APPLIED MATHEMATICS, 2014, 169 :176-185
[30]  
Li XL, 2013, MATCH-COMMUN MATH CO, V70, P85