On the edge-Szeged index of unicyclic graphs with given diameter

被引:7
作者
Wang, Guangfu [1 ]
Li, Shuchao [2 ]
Qi, Dongchao [2 ]
Zhang, Huihui [3 ]
机构
[1] East China Jiaotong Univ, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Hubei, Peoples R China
[3] Luoyang Normal Univ, Dept Math, Luoyang 471002, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge-Szeged index; Unicyclic graphs; Diameter; WIENER INDEX; TOPOLOGICAL INDEX; BIPARTITE GRAPHS; EXTREMAL CACTI; CONJECTURES; DISTANCE; RESPECT;
D O I
10.1016/j.amc.2018.04.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected graph G, the edge Szeged index Sz(e)(G) is defined as Sz(e)(G) = Sigma e-uv is an element of E m(u)(e)m(v)(e), where m(u)(e) and m(v)(e) are, respectively, the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u. In this paper, some extremal problems on the edge-Szeged index of unicyclic graphs are considered. All the n-vertex unicyclic graphs with a given diameter having the minimum edge-Szeged index are identified. Using a unified approach we identify the n-vertex unicyclic graphs with the minimum, second minimum, third minimum and fourth minimum edge-Szeged indices. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 106
页数:13
相关论文
共 47 条
[1]  
[Anonymous], 2012, Graph Energy
[2]  
[Anonymous], [No title captured]
[3]   On the difference between the Szeged and the Wiener index [J].
Bonamy, Marthe ;
Knor, Martin ;
Luzar, Borut ;
Pinlou, Alexandre ;
Skrekovski, Riste .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 312 :202-213
[4]  
Bondy A., 2008, GRAPH THEORY
[5]  
Cai XC, 2010, MATCH-COMMUN MATH CO, V63, P133
[6]  
cevic D.V., 2009, COMMUN MATH COMPUT C, V61, P673
[7]  
Chen L, 2012, TRANS COMB, V1, P43
[8]   The (revised) Szeged index and the Wiener index of a nonbipartite graph [J].
Chen, Lily ;
Li, Xueliang ;
Liu, Mengmeng .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 :237-246
[9]  
Chiniforooshan E., 2009, ELECT NOTES DISCRETE, V34, P405
[10]  
Dobrynin A., 1995, Graph Theory Notes of New York, V28, P21