共 61 条
Kilohertz frame-rate two-photon tomography
被引:113
作者:
Kazemipour, Abbas
[1
,2
]
Novak, Ondrej
[1
,3
]
Flickinger, Daniel
[1
]
Marvin, Jonathan S.
[1
]
Abdelfattah, Ahmed S.
[1
]
King, Jonathan
[4
]
Borden, Philip M.
[1
]
Kim, Jeong Jun
[1
]
Al-Abdullatif, Sarah H.
[5
]
Deal, Parker E.
[5
]
Miller, Evan W.
[5
,6
,7
]
Schreiter, Eric R.
[1
]
Druckmann, Shaul
[1
,2
]
Svoboda, Karel
[1
]
Looger, Loren L.
[1
]
Podgorski, Kaspar
[1
]
机构:
[1] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
[2] Stanford Univ, Dept Neuroradiol, Stanford, CA 94305 USA
[3] Charles Univ Prague, Med Fac 2, Prague, Czech Republic
[4] Vidrio Technol, Ashburn, VA USA
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
基金:
美国国家科学基金会;
美国国家卫生研究院;
关键词:
FLUORESCENCE MICROSCOPY;
CALCIUM TRANSIENTS;
NMDA RECEPTORS;
SINGLE SPINES;
RESOLUTION;
VOLTAGE;
LIGHT;
DECONVOLUTION;
NEURONS;
GLUTAMATE;
D O I:
10.1038/s41592-019-0493-9
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 mu m and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.
引用
收藏
页码:778 / +
页数:13
相关论文