Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy

被引:17
作者
Vitry, P. [1 ]
Bourillot, E. [1 ]
Plassard, C. [1 ]
Lacroute, Y. [1 ]
Tetard, L. [2 ]
Lesniewska, E. [1 ]
机构
[1] Univ Bourgogne, CNRS, UMR 6303, ICB, F-21078 Dijon, France
[2] Univ Cent Florida, Nanosci Technol Ctr, Orlando, FL 32826 USA
关键词
ULTRASONIC FREQUENCIES; HOLOGRAPHY; NANOPARTICLES; CANTILEVERS;
D O I
10.1063/1.4892467
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper reports on advances toward quantitative non-destructive nanoscale subsurface investigation of a nanofabricated sample based on mode synthesizing atomic force microscopy with heterodyne detection, addressing the need to correlate the role of actuation frequencies of the probe f(p) and the sample f(s) with depth resolution for 3D tomography reconstruction. Here, by developing a simple model and validating the approach experimentally through the study of the nanofabricated calibration depth samples consisting of buried metallic patterns, we demonstrate avenues for quantitative nanoscale subsurface imaging. Our findings enable the reconstruction of the sample depth profile and allow high fidelity resolution of the buried nanostructures. Non-destructive quantitative nanoscale subsurface imaging offers great promise in the study of the structures and properties of complex systems at the nanoscale. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 21 条
[1]   Scanning local-acceleration microscopy [J].
Burnham, NA ;
Kulik, AJ ;
Gremaud, G ;
Gallo, PJ ;
Oulevey, F .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02) :794-799
[2]   Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy [J].
Cantrell, Sean A. ;
Cantrell, John H. ;
Lillehei, Peter T. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
[3]   Thin film characterization by atomic force microscopy at ultrasonic frequencies [J].
Crozier, KB ;
Yaralioglu, GG ;
Degertekin, FL ;
Adams, JD ;
Minne, SC ;
Quate, CF .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1950-1952
[4]   Ultrasonic force microscopy on strained antimony nanoparticles [J].
Cuberes, M. T. ;
Stegemann, B. ;
Kaiser, B. ;
Rademann, K. .
ULTRAMICROSCOPY, 2007, 107 (10-11) :1053-1060
[5]   Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies [J].
Cuberes, MT ;
Assender, HE ;
Briggs, GAD ;
Kolosov, OV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (19) :2347-2355
[6]   Nonlinear detection of ultrasonic vibration of AFM cantilevers in and out of contact with the sample [J].
Cuberes, MT ;
Briggs, GAD ;
Kolosov, O .
NANOTECHNOLOGY, 2001, 12 (01) :53-59
[7]   Frequency-modulation atomic force microscopy at high cantilever resonance frequencies using the heterodyne optical beam deflection method [J].
Fukuma, T ;
Kimura, K ;
Kobayashi, K ;
Matsushige, K ;
Yamada, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (12) :1-3
[8]   Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy [J].
Kolosov, OV ;
Castell, MR ;
Marsh, CD ;
Briggs, GAD ;
Kamins, TI ;
Williams, RS .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1046-1049
[9]   High-resolution scanning thermal probe with servocontrolled interface circuit for microcalorimetry-and other applications [J].
Lee, JH ;
Gianchandani, YB .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05) :1222-1227
[10]  
Passian A., 2013, U. S. patent application, Patent No. [12/726,083, 12726083]