Probing the surface chemistry for reverse water gas shift reaction on Pt (111) using ambient pressure X-ray photoelectron spectroscopy

被引:16
|
作者
Su, Hongyang [1 ,2 ]
Ye, Yifan [1 ,3 ,4 ]
Lee, Kyung-Jae [1 ,5 ]
Zeng, Jie [2 ]
Mun, Bongjin S. [5 ]
Crumlin, Ethan J. [1 ,4 ]
机构
[1] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys,Key Lab Surface & Interface Chem &, Key Lab Strongly Coupled Quantum Matter Phys,Chin, Hefei 230026, Anhui, Peoples R China
[3] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[5] Gwangju Inst Sci & Technol GIST, Dept Phys & Photon Sci, Gwangju 500712, South Korea
关键词
Ambient pressure X-ray photoelectron spectroscopy (APXPS); Surface catalysis; Reverse water gas shift (RWGS) reaction; CO2; hydrogenation; CO2; HYDROGENATION; PT(111) SURFACE; CARBON-DIOXIDE; DISSOCIATION; REDUCTION; ADSORPTION; CONVERSION; CATALYST; METHANATION; OXIDATION;
D O I
10.1016/j.jcat.2020.08.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using ambient pressure XPS (APXPS), we explored carbon dioxide (CO2) adsorption and CO2 hydrogenation on Pt(111) single crystal surface to observe the activation of CO2 and the subsequent reaction mechanism. In pure CO2, we observed CO adsorbates and adsorbed oxygen on Pt(111) derived from CO2 dissociation at room temperature. The introduction of H-2 (at a pressure ratio of 1:1 (H-2:CO2)) increased the production of CO across all temperatures by facilitating the removal of surface oxygen. As a consequence, the surface could expose sites that could then be utilized for producing CO. Under these conditions, the reverse water-gas shift (RWGS) reaction was observed starting at 300 degrees C. At higher H-2 partial pressure (10:1 (H-2:CO2)), the RWGS reaction initiated at a lower temperature of 200 degrees C and continued to enhance the conversion of CO2 with increasing temperatures. Our results revealed that CO2 was activated on a clean Pt(111) surface through the dissociation mechanism to form adsorbed CO and O at room temperature and at elevated temperatures. Introducing H-2 facilitated the RWGS as adsorbed oxygen was consumed continuously to form H2O, and adsorbed CO desorbed from the surface at elevated temperatures. This work clearly provides direct experimental evidence for the surface chemistry of CO2 dissociation and demonstrates how hydrogen impacts the RWGS reaction on a platinum surface. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [21] Factors influencing surface carbon contamination in ambient-pressure x-ray photoelectron spectroscopy experiments
    Comini, Nicolo'
    Huthwelker, Thomas
    Diulus, J. Trey
    Osterwalder, Jurg
    Novotny, Zbynek
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (04):
  • [22] Water Reactivity on the LaCoO3 (001) Surface: An Ambient Pressure X-ray Photoelectron Spectroscopy Study
    Stoerzinger, Kelsey A.
    Hong, Wesley T.
    Crumlin, Ethan J.
    Bluhm, Hendrik
    Biegalski, Michael D.
    Shao-Horn, Yang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (34) : 19733 - 19741
  • [23] Methanol adsorption and dissociation on GaP(110) studied by ambient pressure X-ray photoelectron spectroscopy☆
    V. Potapenko, Denis
    Chen, Zhu
    Xu, Shenzhen
    Yang, Xiaofang
    Waluyo, Iradwikanari
    Gilman, Ari
    Carter, Emily A.
    Koel, Bruce E.
    SURFACE SCIENCE, 2025, 758
  • [24] Coupling Ambient Pressure X-ray Photoelectron Spectroscopy with Density Functional Theory to Study Complex Surface Chemistry and Catalysis
    Head, Ashley R.
    Trotochaud, Lena
    Tsyshevsky, Roman
    Fears, Kenan
    Eichhorn, Bryan
    Kuklja, Maija M.
    Bluhm, Hendrik
    TOPICS IN CATALYSIS, 2018, 61 (20) : 2175 - 2184
  • [25] Integrated X-ray photoelectron spectroscopy and DFT characterization of benzene adsorption on Pt(111), Pt(355) and Pt(322) surfaces
    Zhang, Renqin
    Hensley, Alyssa J.
    McEwen, Jean-Sabin
    Wickert, Sandra
    Darlatt, Erik
    Fischer, Kristina
    Schoeppke, Matthias
    Denecke, Reinhard
    Streber, Regine
    Lorenz, Michael
    Papp, Christian
    Steinrueck, Hans-Peter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (47) : 20662 - 20671
  • [26] Pressure-dependent band-bending in ZnO: A near-ambient-pressure X-ray photoelectron spectroscopy study
    Ma, Zhirui
    Lian, Xu
    Yuan, Kaidi
    Sun, Shuo
    Gu, Chengding
    Zhang, Jia Lin
    Lyu, Jing
    Zhong, Jian-Qiang
    Liu, Lei
    Li, Hexing
    Chen, Wei
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 : 25 - 31
  • [27] Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study of the CO Oxidation Reaction on the Oxide/Metal Model Catalyst ZnO/Pt(111)
    Liu, Hang
    Zakhtser, Alter
    Naitabdi, Ahmed
    Rochet, Francois
    Bournel, Fabrice
    Salzemann, Caroline
    Petit, Christophe
    Gallet, Jean-Jacques
    Jie, Wanqi
    ACS CATALYSIS, 2019, 9 (11): : 10212 - 10225
  • [28] In Situ Electrochemical Cells to Study the Oxygen Evolution Reaction by Near Ambient Pressure X-ray Photoelectron Spectroscopy
    Streibel, Verena
    Haevecker, Michael
    Yi, Youngmi
    Velez, Juan J. Velasco
    Skorupska, Katarzyna
    Stotz, Eugen
    Knop-Gericke, Axel
    Schloegl, Robert
    Arrigo, Rosa
    TOPICS IN CATALYSIS, 2018, 61 (20) : 2064 - 2084
  • [29] Unraveling Catalytic Reaction Mechanism by In Situ Near Ambient Pressure X-ray Photoelectron Spectroscopy
    Lian, Xu
    Gao, Jiajia
    Ding, Yishui
    Liu, Yuan
    Chen, Wei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (35) : 8264 - 8277
  • [30] The influence of oxygen on the surface interaction between CO2 and copper studied by ambient pressure X-ray photoelectron spectroscopy
    Regoutz, Anna
    Kerherve, Gwilherm
    Villar-Garcia, Ignacio
    Williams, Charlotte K.
    Payne, David J.
    SURFACE SCIENCE, 2018, 677 : 121 - 127